Environmental Geochemistry and Health ( IF 3.2 ) Pub Date : 2022-02-01 , DOI: 10.1007/s10653-022-01206-y Monika Bar 1 , Konrad A Szychowski 1
Tris(2,3-dibromopropyl) isocyanurate (TBC or TDBP-TAZTO) belongs to the group of brominated flame retardants (BFRs). The production of this compound is increasing due to the growing demand and wide application in electrical, electronic, musical instrument, and automotive component industries. The properties of TBC, e.g., the high octanol–air partition coefficient (Koa), high octanol–water partition coefficient (Kow), and high bioconcentration factor (BCF), indicate a possibility of its spread in aquatic and terrestrial ecosystems and bioaccumulation in living organisms. The presence of TBC has been confirmed in soil, sediments, river water, and such materials as microplastic, curtains, and e-waste devices. The compound has potential to bioaccumulate in the food chain of living organisms. TBC has been demonstrated to exert a harmful effect mainly on the nervous and endocrine systems, lungs, and liver. The possible mechanism of toxicity of the compound in the nervous system is based on the generation of oxidative stress by TBC leading to apoptosis of neuronal cells, while mitochondrial damage is considered to be responsible for changes in the respiratory organ. Moreover, the potential of mussels and earthworms to be bioindicators of TBC has been proven. Therefore, the literature review is focused on TBC properties and analysis of the identification and impact of the compound on the environment, living organisms, and human cell lines. Given the many toxic effects of TBC highlighted in the literature, there is a need for more profound research on the safety of TBC and methods for identification and degradation of this compound.
中文翻译:
三(2,3-二溴丙基)异氰脲酸酯(TBC 或 TDBP-TAZTO)对生物体和环境的影响的全面审查
三(2,3-二溴丙基)异氰脲酸酯(TBC 或 TDBP-TAZTO)属于溴化阻燃剂 (BFR) 类别。由于电气、电子、乐器和汽车零部件行业不断增长的需求和广泛应用,这种化合物的产量正在增加。TBC 的特性,例如高辛醇-空气分配系数 (Koa)、高辛醇-水分配系数 (Kow) 和高生物富集系数 (BCF),表明其在水生和陆地生态系统中的传播和生物积累的可能性生物体。TBC 的存在已在土壤、沉积物、河水以及微塑料、窗帘和电子垃圾设备等材料中得到证实。该化合物有可能在生物体的食物链中生物积累。TBC 已被证明主要对神经和内分泌系统、肺和肝脏产生有害影响。该化合物在神经系统中的毒性可能机制是基于 TBC 产生的氧化应激导致神经元细胞凋亡,而线粒体损伤被认为是呼吸器官变化的原因。此外,贻贝和蚯蚓作为 TBC 生物指示剂的潜力已得到证实。因此,文献综述的重点是 TBC 特性以及化合物的鉴定和对环境、生物体和人类细胞系的影响的分析。鉴于文献中强调的 TBC 的许多毒性作用,需要对 TBC 的安全性以及该化合物的鉴定和降解方法进行更深入的研究。