当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Capturing Carriers and Driving Depolarization by Defect Engineering for Dielectric Energy Storage
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-01-26 , DOI: 10.1021/acsami.1c20214
Yueshun Zhao 1 , Bo Yang 1 , Yaping Liu 1 , Yunpeng Zhou 1 , Qiong Wu 1 , Shifeng Zhao 1
Affiliation  

The inevitable defect carriers in dielectric capacitors are generally considered to depress the polarization and breakdown strength, which decreases energy storage performances. Distinctive from the traditional aims of reducing defects as much as possible, this work designs (FeTi – Vo••) and (FeTi – Vo••) defect dipoles by oxygen vacancy defect engineering in acceptor doped Sr2Bi4Ti(5–x)FexO18 layered perovskite films with n-type leakage conductance. It is shown that oxygen vacancies effectively capture electrons (carriers) in n-type dielectrics to enhance the breakdown strength. Meanwhile, defect dipoles provide a driving field for depolarization to engineer the generation energy of domains and the domain wall energy, which effectively lowers the residual polarization Pr but not at the expense of the maximum polarization Pmax as relaxor ferroelectric regulations. Such defect engineering effectively breaks through the limitation, in which the energy storage density suffers from the trade-off relationship between polarization and breakdown strength. The Sr2Bi4Ti4.92Fe0.08O18 film with the proper oxygen vacancy content achieves a high energy density of 110.5 J/cm3 and efficiency of 70.0% at a high breakdown strength of 3915 kV/cm. This work explores an alternative way for breakthroughs possible in the intrinsic trade-off relationship to regulate dielectric energy storage by defect engineering.

中文翻译:

通过电介质储能的缺陷工程捕获载流子并驱动去极化

介质电容器中不可避免的缺陷载流子通常被认为会降低极化和击穿强度,从而降低储能性能。与尽可能减少缺陷的传统目标不同,这项工作通过受主掺杂的 Sr 2中的氧空位缺陷工程设计了 (Fe Ti – V o •• ) 和 (Fe Ti – V o •• ) 缺陷偶极子。 Bi 4 Ti (5– x ) Fe x O 18具有n型漏电导的层状钙钛矿薄膜。结果表明,氧空位有效地捕获 n 型电介质中的电子(载流子)以提高击穿强度。同时,缺陷偶极子为去极化提供了驱动场,以设计畴的产生能量和畴壁能量,有效地降低了剩余极化P r但不以弛豫铁电规则的最大极化P max为代价。这种缺陷工程有效地突破了储能密度受到极化和击穿强度之间权衡关系的限制。Sr 2 Bi 4 Ti 4.92 Fe具有适当氧空位含量的0.08 O 18薄膜在3915 kV/cm的高击穿强度下实现了110.5 J/cm 3的高能量密度和70.0%的效率。这项工作探索了一种替代方法,可以突破内在权衡关系,通过缺陷工程调节介电能量存储。
更新日期:2022-02-09
down
wechat
bug