当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
One-Pot Bioelectrocatalytic Conversion of Chemically Inert Hydrocarbons to Imines
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2022-01-25 , DOI: 10.1021/jacs.1c13063 Hui Chen 1 , Tianhua Tang 1 , Christian A Malapit 1 , Yoo Seok Lee 1 , Matthew B Prater 1 , N Samali Weliwatte 1 , Shelley D Minteer 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2022-01-25 , DOI: 10.1021/jacs.1c13063 Hui Chen 1 , Tianhua Tang 1 , Christian A Malapit 1 , Yoo Seok Lee 1 , Matthew B Prater 1 , N Samali Weliwatte 1 , Shelley D Minteer 1
Affiliation
Petroleum hydrocarbons are our major energy source and an important feedstock for the chemical industry. With the exception of combustion, the deep conversion of chemically inert hydrocarbons to more valuable chemicals is of considerable interest. However, two challenges hinder this conversion. One is the regioselective activation of inert carbon–hydrogen (C–H) bonds. The other is designing a pathway to realize this complicated conversion. In response to the two challenges, a multistep bioelectrocatalytic system was developed to realize the one-pot deep conversion from heptane to N-heptylhepan-1-imine under mild conditions. First, in this enzymatic cascade, a bioelectrocatalytic C–H bond oxyfunctionalization step based on alkane hydroxylase (alkB) was applied to regioselectively convert heptane to 1-heptanol. By integrating subsequent alcohol oxidation and bioelectrocatalytic reductive amination steps based on an engineered choline oxidase (AcCO6) and a reductive aminase (NfRedAm), the generated 1-heptanol was successfully converted to N-heptylhepan-1-imine. The electrochemical architecture provided sufficient electrons to drive the bioelectrocatalytic C–H bond oxyfunctionalization and reductive amination steps with neutral red (NR) as electron mediator. The highest concentration of N-heptylhepan-1-imine achieved was 0.67 mM with a Faradaic efficiency of 45% for C–H bond oxyfunctionalization and 70% for reductive amination. Hexane, octane, and ethylbenzene were also successfully converted to the corresponding imines. Via regioselective C–H bond oxyfunctionalization, intermediate oxidation, and reductive amination, the bioelectrocatalytic hydrocarbon deep conversion system successfully realized the challenging conversion from inert hydrocarbons to imines that would have been impossible by using organic synthesis methods and provided a new methodology for the comprehensive conversion and utilization of inert hydrocarbons.
中文翻译:
化学惰性烃向亚胺的一锅法生物电催化转化
石油烃是我们的主要能源,也是化学工业的重要原料。除燃烧外,化学惰性碳氢化合物深度转化为更有价值的化学品具有相当大的兴趣。然而,有两个挑战阻碍了这种转变。一种是惰性碳-氢(C-H)键的区域选择性活化。另一个是设计实现这种复杂转换的途径。针对这两个挑战,开发了一种多步生物电催化系统,以实现从庚烷到N的一锅深度转化。-heptylhepan-1-imine 在温和条件下。首先,在该酶级联反应中,应用基于烷烃羟化酶 (alkB) 的生物电催化 C-H 键氧官能化步骤,将庚烷区域选择性地转化为 1-庚醇。通过整合基于工程胆碱氧化酶 (AcCO 6 ) 和还原氨基酶 (NfRedAm) 的后续醇氧化和生物电催化还原胺化步骤,生成的 1-庚醇成功转化为N-庚基肝素-1-亚胺。电化学结构提供了足够的电子来驱动生物电催化 C-H 键氧官能化和以中性红 (NR) 作为电子介体的还原胺化步骤。N的最高浓度-heptylhepan-1-imine 达到 0.67 mM,C-H 键氧官能化的法拉第效率为 45%,还原胺化的法拉第效率为 70%。己烷、辛烷和乙苯也成功地转化为相应的亚胺。该生物电催化烃类深度转化系统通过区域选择性C-H键氧官能化、中间体氧化和还原胺化,成功实现了有机合成方法无法实现的惰性烃类到亚胺类的挑战性转化,为全面转化提供了新方法。和惰性碳氢化合物的利用。
更新日期:2022-01-25
中文翻译:
化学惰性烃向亚胺的一锅法生物电催化转化
石油烃是我们的主要能源,也是化学工业的重要原料。除燃烧外,化学惰性碳氢化合物深度转化为更有价值的化学品具有相当大的兴趣。然而,有两个挑战阻碍了这种转变。一种是惰性碳-氢(C-H)键的区域选择性活化。另一个是设计实现这种复杂转换的途径。针对这两个挑战,开发了一种多步生物电催化系统,以实现从庚烷到N的一锅深度转化。-heptylhepan-1-imine 在温和条件下。首先,在该酶级联反应中,应用基于烷烃羟化酶 (alkB) 的生物电催化 C-H 键氧官能化步骤,将庚烷区域选择性地转化为 1-庚醇。通过整合基于工程胆碱氧化酶 (AcCO 6 ) 和还原氨基酶 (NfRedAm) 的后续醇氧化和生物电催化还原胺化步骤,生成的 1-庚醇成功转化为N-庚基肝素-1-亚胺。电化学结构提供了足够的电子来驱动生物电催化 C-H 键氧官能化和以中性红 (NR) 作为电子介体的还原胺化步骤。N的最高浓度-heptylhepan-1-imine 达到 0.67 mM,C-H 键氧官能化的法拉第效率为 45%,还原胺化的法拉第效率为 70%。己烷、辛烷和乙苯也成功地转化为相应的亚胺。该生物电催化烃类深度转化系统通过区域选择性C-H键氧官能化、中间体氧化和还原胺化,成功实现了有机合成方法无法实现的惰性烃类到亚胺类的挑战性转化,为全面转化提供了新方法。和惰性碳氢化合物的利用。