本工作首次制备了具有仿生孔雀羽毛超疏水表面结构的紫外光固化电活性聚氨酯丙烯酸酯(EPU)材料,并将其应用于防腐涂料。首先,合成了胺封端苯胺三聚体(ACAT)和乙烯基封端苯胺三聚体(VCAT),并通过1 H-核磁共振光谱(NMR)、傅里叶变换红外光谱(FTIR)和质谱对其进行了表征。聚氨酯丙烯酸酯 (PUA) 的合成和表征1H NMR和FTIR光谱。然后通过用 0、1、3 和 5 wt% VCAT(分别命名为 EPU0、EPU1、EPU3 和 EPU5)对 PUA 进行 UV 固化来制备 EPU,并通过 FTIR 进行表征。通过循环伏安法研究研究了所制备的 EPU 系列的氧化还原能力。基于一系列电化学腐蚀测量,具有较高 VCAT 负载 (EPU5) 的 EPU 表现出比具有较低 VCAT 负载 (EPU0、EPU1 和 EPU3) 的更好的腐蚀保护性能,因为拉曼光谱证明形成了致密的金属氧化物层。此外,以聚二甲基硅氧烷为柔性透明负模板,通过纳米铸造技术制备了具有仿生孔雀羽毛表面结构的EPU5(记为BEPU5)。通过扫描电子显微镜和接触角(CA)分析研究了BEPU5的表面形态和润湿性。与 EPU5 的 63° 相比,BEPU5 的 CA 显着增加到 145°。CA 的这种大量增加表明了高效的超疏水性能,这是由仿生孔雀羽毛诱导的,并基于一系列电化学腐蚀测量结果在短期和长期内产生了出色的腐蚀保护性能。这项研究是同类研究中第一个生产具有大量超疏水性能的仿生羽毛,预计这将彻底改变仿生工业涂层技术,使其朝着更好的防腐蚀涂层方向发展。CA 的这种大量增加表明了高效的超疏水性能,这是由仿生孔雀羽毛诱导的,并基于一系列电化学腐蚀测量结果在短期和长期内产生了出色的腐蚀保护性能。这项研究是同类研究中第一个生产具有大量超疏水性能的仿生羽毛,预计这将彻底改变仿生工业涂层技术,使其朝着更好的防腐蚀涂层方向发展。CA 的这种大量增加表明了高效的超疏水性能,这是由仿生孔雀羽毛诱导的,并基于一系列电化学腐蚀测量结果在短期和长期内产生了出色的腐蚀保护性能。这项研究是同类研究中第一个生产具有大量超疏水性能的仿生羽毛,预计这将彻底改变仿生工业涂层技术,使其朝着更好的防腐蚀涂层方向发展。
"点击查看英文标题和摘要"
UV-cured electroactive polyurethane acrylate coatings with superhydrophobic surface structure of biomimetic peacock feather for anticorrosion application
In this work, UV-cured electroactive polyurethane acrylate (EPU) materials with the superhydrophobic surface structure of biomimetic peacock feather were firstly prepared and applied in anticorrosive coatings. Firstly, amine-capped aniline trimer (ACAT) and vinyl-capped aniline trimer (VCAT) were synthesised and characterised by 1H-nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR) and mass spectroscopy. Polyurethane acrylate (PUA) was synthesised and characterised by 1H NMR and FTIR spectroscopy. EPU was then prepared through the UV curing of PUA with 0, 1, 3 and 5 wt% VCAT (named EPU0, EPU1, EPU3 and EPU5, respectively) and characterised via FTIR. The redox capabilities of the as-prepared EPU series were investigated by cyclic voltammetry studies. EPU with higher VCAT loading (EPU5) exhibited better corrosion protection performance than those with lower VCAT loadings (EPU0, EPU1 and EPU3) based on a series of electrochemical corrosion measurements because of the formation of a dense metal oxide layer as evidenced by Raman spectroscopy. Moreover, EPU5 with the surface structure of biomimetic peacock feather (denoted by BEPU5) was prepared by nanocasting technique with polydimethylsiloxane as the flexible transparent negative template. The surface morphology and wettability of BEPU5 was investigated by scanning electron microscopy and contact angle (CA) analysis. The CA of BEPU5 remarkably increased to 145° compared with that of EPU5 63°. This massive increase in CA indicates efficient superhydrophobic properties, which were induced by the biomimetic peacock feather and produced outstanding corrosion protection performance for short and long terms based on a series of electrochemical corrosion measurements. This study is the first of its type to produce a biomimetic feather with massive increase in superhydrophobic properties, which is expected to revolutionise biomimetic industrial coating technologies towards better corrosion protective coatings.