当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonadiabatic Dynamics of Polaron Hopping and Coupling with Water on Reduced TiO2
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2022-01-19 , DOI: 10.1021/acs.jpclett.1c04231
Zhong-Fei Xu 1, 2, 3 , Chuan-Jia Tong 4 , Ru-Tong Si 3 , Gilberto Teobaldi 5, 6 , Li-Min Liu 2
Affiliation  

By interplay between first-principles molecular dynamics and nonadiabatic molecular dynamics simulations based on the decoherence-induced surface-hopping approach, we investigate and quantify the mechanisms through which different electron polaron hopping regimes in the reduced anatase TiO2(101) surface influence recombination of photogenerated charge carriers, also in the presence of adsorbed water (H2O) molecules. The simulations reveal that fast hopping regimes promote ultrafast recombination of photogenerated charge-carriers. Conversely, charge recombination is delayed in the presence of slower polaron hopping and even more so if the polaron is pinned at one Ti-site, as typical following adsorption of H2O on the anatase(101) surface. These trends are related to the observed enhancement of the space and energy overlap between conduction band minimum and polaron band gap states, and the ensuing nonadiabatic couplings (NAC) strengths, during a polaronic hop. We expect these insights on the beneficial role of polaron diffusion pinning for the extended lifetime of photoexcitations in TiO2 to sustain ongoing developments of photocatalytic strategies based on this substrate.

中文翻译:

还原 TiO2 上极化子跳跃和水耦合的非绝热动力学

通过基于退相干诱导的表面跳跃方法的第一性原理分子动力学和非绝热分子动力学模拟之间的相互作用,我们研究和量化了还原锐钛矿 TiO 2 (101) 表面中不同电子极化子跳跃方案影响重组的机制。光生电荷载流子,也在吸附水 (H 2 O) 分子的存在下。模拟表明,快速跳跃机制促进光生电荷载流子的超快复合。相反,在较慢的极化子跳跃存在下,电荷重组被延迟,如果极化子被固定在一个 Ti 位点,则更是如此,如吸附 H 2后的典型情况O 在锐钛矿(101)表面。这些趋势与在极化子跳跃期间观察到的导带最小值和极化子带隙状态之间的空间和能量重叠的增强以及随后的非绝热耦合(NAC)强度有关。我们期望这些关于极化子扩散钉扎对延长 TiO 2中光激发寿命的有益作用的见解,以维持基于该基材的光催化策略的持续发展。
更新日期:2022-01-27
down
wechat
bug