当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of pore structure on Ni/Al2O3 microsphere catalysts for enhanced CO2 methanation
Fuel ( IF 6.7 ) Pub Date : 2022-01-16 , DOI: 10.1016/j.fuel.2022.123262
Huilin Yi 1 , Qiangqiang Xue 1 , Shuliang Lu 2 , Jiajia Wu 2 , Yujun Wang 1 , Guangsheng Luo 1
Affiliation  

An understanding of the support effect is fundamental for guiding the rational design of heterogeneous catalysts. Herein, the role of pore structure on metal dispersion and catalytic performance was comprehensively investigated using Ni/Al2O3 catalysts. Three different Al2O3 supports, including Al2O3 microspheres prepared in microchannels and two commercially available Al2O3 supports named Sample 1 and Sample 2, were used and the Ni/Al2O3 catalysts were prepared by wetness impregnation method. X-ray diffraction, transmission electron microscopy, H2 temperature-programmed reduction, X-ray photoelectron spectroscopy, N2 adsorption–desorption, and H2 pulse chemisorption analyses combined with a sintering kinetic model were used to investigate the effect of the support pore structure. The narrow pore size distribution (3–15 nm) of Al2O3 microspheres and Sample 1 led to a uniform NiO dispersion for the calcined catalysts. Moreover, the high specific surface area (291 m2/g) and large pore volume (1.0 mL/g) of the Al2O3 microspheres were beneficial for the deposition of NiO particles inside mesopore to obtain a stronger metal–support interaction. Owing to the smaller NiO nanoparticles and stronger metal–support interaction, the reduced Ni/Al2O3 microspheres exhibited an average Ni particle size of 10.2 nm under 36 wt% nickel loading, whereas the average Ni particle size loaded on Sample 1 and Sample 2 were 12.6 nm and 13.2 nm, respectively. The optimized CO2 conversion of 87.0% at 300 °C under atmospheric pressure was attributed to the large pore volume and uniform Ni dispersion of Ni/Al2O3 microsphere catalysts while the same value for Sample 1 and Sample 2 catalysts was 81.5% and 55.0%, respectively. This work provides valuable guidelines for designing effective CO2 methanation support and proves the potential application of Al2O3 microspheres for CO2 methanation.



中文翻译:

孔结构对 Ni/Al2O3 微球催化剂强化 CO2 甲烷化的影响

对载体效应的理解是指导多相催化剂合理设计的基础。在此,使用Ni/Al 2 O 3催化剂全面研究了孔结构对金属分散和催化性能的作用。使用三种不同的Al 2 O 3载体,包括在微通道中制备的Al 2 O 3微球和两种市售的Al 2 O 3载体,分别命名为样品1和样品2,并通过湿浸渍法制备了Ni/Al 2 O 3催化剂。 . X射线衍射,透射电子显微镜,H 2程序升温还原、X射线光电子能谱、N 2吸附-解吸和H 2脉冲化学吸附分析结合烧结动力学模型来研究载体孔结构的影响。Al 2 O 3微球和样品 1的窄孔径分布(3-15 nm)导致煅烧催化剂的 NiO 分散均匀。此外,Al 2 O 3的高比表面积(291 m 2 /g)和大孔体积(1.0 mL/g)微球有利于NiO颗粒在中孔内的沉积,以获得更强的金属-载体相互作用。由于更小的 NiO 纳米颗粒和更强的金属-载体相互作用,还原的 Ni/Al 2 O 3微球在 36 wt% 的镍负载下表现出 10.2 nm 的平均 Ni 粒径,而负载在样品 1 和样品上的平均 Ni 粒径2 分别为 12.6 nm 和 13.2 nm。在大气压下 300 °C 时优化的 CO 2转化率为 87.0%,这归因于 Ni/Al 2 O 3的大孔体积和均匀的 Ni 分散微球催化剂,而样品 1 和样品 2 催化剂的相同值分别为 81.5% 和 55.0%。这项工作为设计有效的 CO 2甲烷化载体提供了有价值的指导,并证明了 Al 2 O 3微球在 CO 2甲烷化中的潜在应用。

更新日期:2022-01-16
down
wechat
bug