当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of Prediction Models for the Self-Accelerating Decomposition Temperature of Organic Peroxides
ACS Omega ( IF 3.7 ) Pub Date : 2022-01-05 , DOI: 10.1021/acsomega.1c06481
Toshiharu Morishita 1 , Hiromasa Kaneko 1
Affiliation  

Thermal risk assessment is very important in the primary stages of chemical compound development. In this study, a model to estimate the self-accelerated decomposition temperature of organic peroxides was developed. The structural information of compounds was used to calculate descriptors, on which partial least-squares (PLS) regression and support vector regression were applied for temperature prediction. Molecular mechanics and density functional theory calculations were performed before descriptor calculations, for structure optimization, using a genetic algorithm for variable selection. Structure optimization and variable selection immensely improved the prediction accuracy. Thus, a PLS model, with R2 = 0.95, root mean square error = 5.1 °C, and mean absolute error = 4.0 °C, exhibiting higher accuracy than existing self-accelerating decomposition temperature prediction models, was constructed.

中文翻译:

有机过氧化物自加速分解温度预测模型的开发

热风险评估在化合物开发的初级阶段非常重要。在这项研究中,建立了一个估计有机过氧化物自加速分解温度的模型。化合物的结构信息用于计算描述符,在其上应用偏最小二乘(PLS)回归和支持向量回归进行温度预测。分子力学和密度泛函理论计算在描述符计算之前进行,用于结构优化,使用遗传算法进行变量选择。结构优化和变量选择极大地提高了预测精度。因此,具有R 2的 PLS 模型= 0.95,均方根误差= 5.1°C,平均绝对误差= 4.0°C,比现有的自加速分解温度预测模型具有更高的精度。
更新日期:2022-01-18
down
wechat
bug