当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation
Lab on a Chip ( IF 6.1 ) Pub Date : 2022-01-06 , DOI: 10.1039/d1lc00933h
Lin Sun 1, 2 , Thomas Lehnert 1 , Songjing Li 2 , Martin A M Gijs 1
Affiliation  

DNA fragmentation is an essential process in developing genetic sequencing strategies, genetic research, as well as for the diagnosis of diseases with a genetic signature like cancer. Efficient on-chip DNA fragmentation protocols would be beneficial to process integration and open new opportunities for microfluidics in genetic applications. Here we present an acoustic microfluidic chip comprising an array of ultrasound-actuated microbubbles located at dedicated positions adjacent to a channel containing the DNA sample solution. The efficiency of the on-chip DNA fragmentation process arises mainly from tensile forces generated by acoustic streaming near the oscillating bubble interfaces, as well as a synergistic effect of streaming stress and ultrasonic cavitation. Acoustic microstreaming and the pressure distribution in the DNA channel were assessed by finite element simulation. We characterized the bubble-enhanced effect by measuring gene fragment size distributions with respect to different ultrasound parameters. For optimized on-chip conditions, purified lambda (λ) DNA (48.5 kbp) could be disrupted to fragments with an average size of 2 kbp after 30 s and down to 300 bp after 90 s. Mouse genomic DNA (1.4 kbp) fragmentation size decreased to 500 bp in 30 s and reduced further to 250 bp in 90 s. Bubble-induced fragmentation was more than 3 times faster than without bubbles. On-chip performance and process yield were found to be comparable to a sophisticated high-end commercial system. In this view, our new bubble-enhanced microfluidic approach is a promising tool for current and next generation sequencing platforms with high efficiency and good capacity. Moreover, the availability of an efficient on-chip DNA fragmentation process opens perspectives for implementing full molecular protocols on a single microfluidic platform.

中文翻译:

用于快速 DNA 片段化的气泡增强超声微流控芯片

DNA 片段化是开发基因测序策略、基因研究以及诊断具有遗传特征的疾病(如癌症)的重要过程。高效的片上 DNA 片段化协议将有利于过程集成,并为微流体在遗传应用中开辟新的机会。在这里,我们提出了一种声学微流控芯片,它包含一系列超声波驱动的微泡,这些微泡位于与包含 DNA 样品溶液的通道相邻的专用位置。芯片上 DNA 片段化过程的效率主要来自振荡气泡界面附近声流产生的张力,以及流应力和超声空化的协同效应。通过有限元模拟评估了 DNA 通道中的声学微流和压力分布。我们通过测量相对于不同超声参数的基因片段大小分布来表征气泡增强效应。对于优化的片上条件,纯化的 lambda (λ) DNA (48.5 kbp) 可以在 30 秒后分裂成平均大小为 2 kbp 的片段,在 90 秒后分裂为平均大小为 300 bp 的片段。小鼠基因组 DNA (1.4 kbp) 碎片大小在 30 秒内减少到 500 bp,并在 90 秒内进一步减少到 250 bp。气泡引起的碎裂比没有气泡时快 3 倍以上。发现片上性能和工艺产量可与复杂的高端商业系统相媲美。在这种情况下,我们新的气泡增强微流体方法是当前和下一代测序平台的一种有前途的工具,具有高效率和良好的容量。此外,高效的片上 DNA 片段化过程的可用性为在单个微流体平台上实施完整的分子协议开辟了前景。
更新日期:2022-01-06
down
wechat
bug