Nano-Micro Letters ( IF 31.6 ) Pub Date : 2022-01-03 , DOI: 10.1007/s40820-021-00785-2
Yaoda Liu 1 , Paranthaman Vijayakumar 1 , Qianyi Liu 1 , Thangavel Sakthivel 1 , Fuyi Chen 2 , Zhengfei Dai 1
|
Highlights
-
This review introduces recent advances of various anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, (oxy)hydroxides, and borides) for efficient water electrolysis applications in detail.
-
The challenges and future perspectives are proposed and analyzed for the anion-mixed water dissociation catalysts, including polyanion-mixed and metal-free catalyst, progressive synthesis strategies, advanced in situ characterizations, and atomic level structure–activity relationship.
Abstract
Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world's carbon neutrality and future sustainable eco-society. Water-splitting is a constructive technology for unpolluted and high-purity H2 production, and a series of non-precious electrocatalysts have been developed over the past decade. To further improve the catalytic activities, metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting (e-DA) properties, while for anion doping, the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances. In this review, we summarize the recent developments of the many different anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, oxyhydroxides, and borides/borates) for efficient water electrolysis applications. First, we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions. Furthermore, some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis. The rationales behind their enhanced electrochemical performances are discussed. Last but not least, the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.
中文翻译:

用于高效水电解的阴离子混合纳米催化剂的发光:基础、进展和展望
强调
-
本综述详细介绍了各种阴离子混合过渡金属化合物(例如氮化物、卤化物、磷化物、硫族化物、(氧)氢氧化物和硼化物)在高效水电解应用中的最新进展。
-
提出并分析了阴离子混合水离解催化剂的挑战和未来前景,包括聚阴离子混合和无金属催化剂、渐进式合成策略、先进的原位表征和原子级结构-活性关系。
抽象的
具有高能量密度和零碳排放的氢被广泛认为是世界碳中和和未来可持续生态社会最有希望的候选者。水分解是无污染和高纯度H 2生产的建设性技术,并且在过去十年中开发了一系列非贵金属电催化剂。为了进一步提高催化活性,通常采用金属掺杂来调节 3 d-电子构型和给电子/接受电子(e-DA)特性,而对于阴离子掺杂,不同非金属元素之间的电负性变化也将为调节e-DA和金属价态的性能带来一些潜力。在这篇综述中,我们总结了许多不同的阴离子混合过渡金属化合物(例如,氮化物、卤化物、磷化物、硫族化物、羟基氧化物和硼化物/硼酸盐),用于高效的水电解应用。首先,我们介绍了水分解的一般信息和阴离子混合电催化剂的描述,并强调了它们与混合阴离子的互补功能。此外,阴离子混合化合物的一些最新进展也被归类为析氢和析氧电催化。讨论了它们增强的电化学性能背后的基本原理。最后但同样重要的是,简要提出了阴离子混合水离解催化剂面临的挑战和未来前景。