当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-time observation and quantification of carbon black oxidation in an environmental transmission electron microscope: Impact of particle size and electron beam
Carbon ( IF 10.5 ) Pub Date : 2021-12-29 , DOI: 10.1016/j.carbon.2021.12.089
Mehran Dadsetan 1 , Ali Naseri 1 , Murray J. Thomson 1
Affiliation  

Carbon black oxidation is a post-treatment method to control its properties for different applications, and its outcomes may depend on the particle size. Three different sizes of carbon blacks were oxidized in an environmental transmission electron microscope to study the size effect on their oxidation pathway and rate. The oxidation at the nanoscale has been quantified using the ASTM D3849-14a standard method for the carbon blacks and compared with the theory of solid particle burning, i.e., D2 law. This comparison confirms the validity of the diffusion-controlled burning model for all three samples oxidized at 800°C in the presence of oxygen molecules. Electron microscope images show surface burning is the governing mode under this condition. Oxidation under electron-beam irradiation shows that the oxidation rate reduces by ∼0%, 30%, and 80% for particles with 33, 112, and 356 nm in diameter, respectively. The results suggest that the electron beam is causing the atomic bonds to break and transform to the graphitic structure at relatively high temperatures (e.g., 800°C) that causes oxidation rate reduction in larger particles. Despite the reduction in oxidation rate as the initial size of carbon particles increases, observations show that surface burning is the dominant mode under electron-beam irradiation.



中文翻译:

在环境透射电子显微镜中实时观察和量化炭黑氧化:粒径和电子束的影响

炭黑氧化是一种后处理方法,可针对不同应用控制其性能,其结果可能取决于粒径。在环境透射电子显微镜下对三种不同尺寸的炭黑进行氧化,以研究尺寸对其氧化途径和氧化速率的影响。纳米级氧化已使用 ASTM D3849-14a 标准方法对炭黑进行量化,并与固体颗粒燃烧理论(即 D 2)进行比较法律。这种比较证实了扩散控制燃烧模型对于在 800°C 在氧分子存在下氧化的所有三个样品的有效性。电子显微镜图像显示表面燃烧是这种情况下的主导模式。电子束辐照下的氧化表明,对于直径为 33、112 和 356 nm 的颗粒,氧化率分别降低了 ~0%、30% 和 80%。结果表明,电子束导致原子键在相对较高的温度(例如,800°C)下断裂并转变为石墨结构,从而导致较大颗粒的氧化速率降低。尽管随着碳颗粒初始尺寸的增加氧化速率降低,但观察表明表面燃烧是电子束照射下的主要模式。

更新日期:2022-01-08
down
wechat
bug