当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multilayer crystal-amorphous Pd-based nanosheets on Si/SiO2 with interface-controlled ion transport for efficient hydrogen storage
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2021-12-24 , DOI: 10.1016/j.ijhydene.2021.12.040
Baran Sarac 1 , Yurii P. Ivanov 2, 3 , Tolga Karazehir 4 , Marlene Mühlbacher 5 , A. Sezai Sarac 6 , A. Lindsay Greer 2 , Jürgen Eckert 1, 5
Affiliation  

This contribution shows an unusually high hydrogen storage of multilayer amorphous (A)-crystalline (C) Pd–Si based nanosheets when stacked in the right order. Samples with A/C/A/C/A stacking sequence exhibit 40 and 12 times larger hydrogen sorption than monolithic crystalline and amorphous samples, respectively. The maximum capacitance calculated from the fitting of electrochemical impedance measurements of the same sample is twice larger than that of the conventional polycrystalline Pd films of similar thickness. Five times higher diffusion coefficient calculated from modified Cottrell equation is obtained compared to specimens with C/A/C/A/C stacking. For the A/C/A/C/A multilayers, nanobubbles with diameters of 1–2 nm are homogeneously distributed at Si/SiO2 interface, and PdHx crystal formation in these regions confirms hydrogen-metal interactions. Furthermore, corrosion-resistant amorphous top layer permits larger amounts of hydrogen ion transfer to inner layers. Thus, hydrogen storage and production can be enhanced by smart design of multilayers targeted for proton exchange membrane electrolysis or fuel cells.



中文翻译:

Si/SiO2 上的多层晶体-非晶 Pd 基纳米片具有界面控制的离子传输以实现高效储氢

这一贡献表明,当以正确的顺序堆叠时,多层非晶 (A)-结晶 (C) Pd-Si 基纳米片具有异常高的储氢能力。具有 A/C/A/C/A 堆叠顺序的样品的吸氢量分别是单片晶体和非晶样品的 40 倍和 12 倍。由相同样品的电化学阻抗测量拟合计算出的最大电容是相似厚度的传统多晶 Pd 薄膜的两倍。与采用 C/A/C/A/C 堆叠的试样相比,根据修正的 Cottrell 方程计算的扩散系数高出五倍。对于 A/C/A/C/A 多层膜,直径为 1-2 nm 的纳米气泡均匀分布在 Si/SiO 2界面,PdH x这些区域的晶体形成证实了氢-金属相互作用。此外,耐腐蚀的无定形顶层允许更大量的氢离子转移到内层。因此,可以通过针对质子交换膜电解或燃料电池的多层智能设计来增强储氢和生产。

更新日期:2021-12-24
down
wechat
bug