Nature Chemistry ( IF 19.2 ) Pub Date : 2021-12-23 , DOI: 10.1038/s41557-021-00852-6 Yixin Zhang 1 , Jinfeng Zhao 1 , Dawei Yang 1 , Baomin Wang 1 , Yuhan Zhou 1 , Junhu Wang 2 , Hui Chen 3 , Tao Mei 1 , Shengfa Ye 4, 5 , Jingping Qu 1, 6
Iron nitrides are key intermediates in biological nitrogen fixation and the industrial Haber–Bosch process, used to form ammonia from dinitrogen. However, the proposed successive conversion of nitride to ammonia remains elusive. In this regard, the search for well-described multi-iron nitrido model complexes and investigations on controlling their reactivity towards ammonia formation have long been of great challenge and importance. Here we report a well-defined thiolate-bridged FeIVFeIV μ-nitrido complex featuring an uncommon bent Fe–N–Fe moiety. Remarkably, this complex shows excellent reactivity toward hydrogenation with H2 at ambient conditions, forming ammonia in high yield. Combined experimental and computational studies demonstrate that a thiolate-bridged FeIIIFeIII μ-amido complex is a key intermediate, which is generated through an unusual two-electron oxidation of H2. Moreover, ammonia production was also realized by treating this diiron μ-nitride with electrons and water as a proton source.
中文翻译:
硫醇桥接的 FeIVFeIV μ-nitrido 络合物及其对氨形成的氢化反应性
氮化铁是生物固氮和工业 Haber-Bosch 过程中的关键中间体,用于从二氮中形成氨。然而,所提出的将氮化物连续转化为氨的方法仍然难以实现。在这方面,长期以来,寻找描述良好的多铁氮化物模型配合物以及控制其对氨形成的反应性的研究一直具有巨大的挑战和重要性。在这里,我们报告了一个定义明确的硫醇盐桥接的 Fe IV Fe IV μ-亚硝基络合物,具有不常见的弯曲 Fe-N-Fe 部分。值得注意的是,该络合物对 H 2氢化反应表现出优异的反应性在环境条件下,以高产率形成氨。结合实验和计算研究表明,硫醇桥接的 Fe III Fe III μ-氨基络合物是关键中间体,它是通过 H 2的异常双电子氧化产生的。此外,通过用电子和水作为质子源处理这种二铁μ-氮化物,也实现了氨的生产。