Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergetic Piezo-Photocatalytic Hydrogen Evolution on CdxZn1-xS Solid-Solution 1D Nanorods
Small ( IF 13.0 ) Pub Date : 2021-12-22 , DOI: 10.1002/smll.202106420 Sen Lin 1 , Shutao Li 1 , Hongwei Huang 1 , Han Yu 2 , Yihe Zhang 1
Small ( IF 13.0 ) Pub Date : 2021-12-22 , DOI: 10.1002/smll.202106420 Sen Lin 1 , Shutao Li 1 , Hongwei Huang 1 , Han Yu 2 , Yihe Zhang 1
Affiliation
Conversion of solar and mechanical vibration energies for catalytic water splitting into H2 has gained substantial attention recently. However, the sluggish charge separation and inefficient energy utilization in photocatalytic and piezocatalytic processes severely restrict the catalytic activity. In this paper, efficient piezo-photocatalytic H2 evolution from water splitting is realized via simultaneously converting solar and vibration energy over one-dimensional (1D) nanorod-structured CdxZn1-xS (x = 0, 0.2, 0.4, 0.6, 0.8, 1) solid solutions. Under combined visible light and ultrasound irradiation, Cd0.4Zn0.6S 1D nanorods deliver a prominently synergetic piezo-photocatalytic H2 yield rate of 4.45 mmol g−1 h−1, far exceeding that under sole ultrasound or illumination. The consumedly promoted catalytic activity of Cd0.4Zn0.6S is attributed to strengthened charge separation by piezo-potential as disclosed by light-assisted scanning Kelvin probe force microscopy (SKPFM), increased strain sensitivity, and desirable optimization between piezoelectricity and visible-light response due to the formation of 1D configuration and solid solution. Metal and metal oxide depositions disclose that reduction and oxidation reactions separately occur at the tips and lateral edges of the Cd0.4Zn0.6S nanorods, in which the spatially separated reactive sites also contribute to super catalytic activity. This work is expected to inspire a new design strategy of coupled catalysis reactions for efficient renewable fuel production.
中文翻译:
CdxZn1-xS固溶一维纳米棒上的协同压电光催化析氢
用于催化水分解成H 2的太阳能和机械振动能的转化最近引起了广泛关注。然而,光催化和压电催化过程中缓慢的电荷分离和低效的能量利用严重限制了催化活性。在本文中,通过在一维(1D)纳米棒结构的Cd x Zn 1 -x S ( x = 0, 0.2, 0.4, 0.6 , 0.8, 1) 固溶体。在可见光和超声联合照射下,Cd 0.4 Zn 0.6S 1D纳米棒提供4.45 mmol g -1 h -1的显着协同压电光催化H 2产率,远远超过单独超声或光照下的产率。Cd 0.4 Zn 0.6 S 的催化活性得到极大提升,这归因于光辅助扫描开尔文探针力显微镜 (SKPFM) 所揭示的压电势能加强电荷分离、应变灵敏度提高以及压电性和可见光响应之间的理想优化由于形成一维构型和固溶体。金属和金属氧化物沉积揭示了还原和氧化反应分别发生在 Cd 0.4 Zn的尖端和横向边缘0.6 S 纳米棒,其中空间分离的反应位点也有助于超催化活性。这项工作有望激发一种用于高效可再生燃料生产的耦合催化反应的新设计策略。
更新日期:2021-12-22
中文翻译:
CdxZn1-xS固溶一维纳米棒上的协同压电光催化析氢
用于催化水分解成H 2的太阳能和机械振动能的转化最近引起了广泛关注。然而,光催化和压电催化过程中缓慢的电荷分离和低效的能量利用严重限制了催化活性。在本文中,通过在一维(1D)纳米棒结构的Cd x Zn 1 -x S ( x = 0, 0.2, 0.4, 0.6 , 0.8, 1) 固溶体。在可见光和超声联合照射下,Cd 0.4 Zn 0.6S 1D纳米棒提供4.45 mmol g -1 h -1的显着协同压电光催化H 2产率,远远超过单独超声或光照下的产率。Cd 0.4 Zn 0.6 S 的催化活性得到极大提升,这归因于光辅助扫描开尔文探针力显微镜 (SKPFM) 所揭示的压电势能加强电荷分离、应变灵敏度提高以及压电性和可见光响应之间的理想优化由于形成一维构型和固溶体。金属和金属氧化物沉积揭示了还原和氧化反应分别发生在 Cd 0.4 Zn的尖端和横向边缘0.6 S 纳米棒,其中空间分离的反应位点也有助于超催化活性。这项工作有望激发一种用于高效可再生燃料生产的耦合催化反应的新设计策略。