当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural Insights into the Lithium Ion Storage Behaviors of Niobium Tungsten Double Oxides
Chemistry of Materials ( IF 7.2 ) Pub Date : 2021-12-22 , DOI: 10.1021/acs.chemmater.1c03727
Wentao Yao 1 , Haojie Zhu 1, 2 , Min Wang 1, 2 , Penghui Li 3 , Peng Liu 1, 2 , Peichao Zou 4 , Anmin Nie 3 , Guangzhao Wang 5 , Feiyu Kang 1, 2 , Cheng Yang 1
Affiliation  

Niobium-based transitional metal oxides are emerging as promising fast-charging electrodes for lithium-ion batteries. Although various niobium-based double oxides have been investigated (Ti–Nb–O, V–Nb–O, W–Nb–O, Cr–Nb–O, etc.), their underlying structure–property relationships are still poorly understood, which hinders the structural optimization for Nb-based electrodes. In this work, niobium tungsten oxides (WNb2O8, W3Nb14O44, and W10.3Nb6.7O47) featured with different structural openings are selected as model systems to investigate the role of crystal structures in their lithium ion storage behaviors. The three crystal structures showed different voltage windows to maintain the stable and high-rate lithium ion (de)intercalation. In detail, WNb2O8 exhibits a wide stability window (cutoff voltage below 0.5 V vs Li/Li+), benefiting from its evenly distributed quadrilateral tunnels. In contrast, W3Nb14O44 and W10.3Nb6.7O47, with larger structural openings, required higher cutoff voltages (1.0 and 1.3 V vs Li/Li+, respectively) to maintain their structural stabilities during lithium (de)insertion. The best rate performance is found in W10.3Nb6.7O47 crystals, benefiting from its large pentagonal tunnels that offered a low lithium intercalation barrier and possible two-dimensional lithium ion pathways. Despite a medium-sized tunnel opening, the Wadsley–Roth structure of W3Nb14O44 shows the highest lithium storage capability and specific capacity due to its abundant lithium intercalation sites. We expect that our systematic investigation of the three representative structures could offer more inspiration for the future structural optimization of Nb-based electrodes toward different energy storage systems.

中文翻译:

铌钨双氧化物锂离子存储行为的结构分析

铌基过渡金属氧化物正在成为有前途的锂离子电池快速充电电极。尽管已经研究了各种铌基双氧化物(Ti-Nb-O、V-Nb-O、W-Nb-O、Cr-Nb-O 等),但它们的潜在结构-性能关系仍然知之甚少,这阻碍了 Nb 基电极的结构优化。在这项工作中,铌钨氧化物(WNb 2 O 8、W 3 Nb 14 O 44和 W 10.3 Nb 6.7 O 47) 具有不同结构开口的特征被选为模型系统,以研究晶体结构在其锂离子存储行为中的作用。三种晶体结构显示出不同的电压窗口,以保持稳定和高速率的锂离子(脱)嵌入。详细地说,得益于其均匀分布的四边形隧道,WNb 2 O 8表现出较宽的稳定性窗口(截止电压低于 0.5 V vs Li/Li +)。相比之下,具有较大结构开口的W 3 Nb 14 O 44和 W 10.3 Nb 6.7 O 47需要更高的截止电压(1.0 和 1.3 V vs Li/Li +,分别)以在锂(脱)插入期间保持其结构稳定性。最佳倍率性能出现在 W 10.3 Nb 6.7 O 47晶体中,这得益于其提供低锂嵌入势垒和可能的二维锂离子通路的大型五边形隧道。尽管隧道开口中等大小,但 W 3 Nb 14 O 44的 Wadsley-Roth 结构由于其丰富的锂嵌入位点,显示出最高的锂存储能力和比容量。我们希望我们对这三种代表性结构的系统研究可以为未来 Nb 基电极针对不同储能系统的结构优化提供更多灵感。
更新日期:2022-01-11
down
wechat
bug