当前位置:
X-MOL 学术
›
Dalton Trans.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Elevating the p-band centre of SnO2 nanosheets through W incorporation for promoting CO2 electroreduction
Dalton Transactions ( IF 3.5 ) Pub Date : 2021-12-02 , DOI: 10.1039/d1dt03152j Dong Fang 1 , Linlin Zhang 1, 2 , Yongjian Niu 1 , Yuanyuan Wang 1 , Qingxiao Su 1 , Jiao Wang 1 , Cheng Wang 1
Dalton Transactions ( IF 3.5 ) Pub Date : 2021-12-02 , DOI: 10.1039/d1dt03152j Dong Fang 1 , Linlin Zhang 1, 2 , Yongjian Niu 1 , Yuanyuan Wang 1 , Qingxiao Su 1 , Jiao Wang 1 , Cheng Wang 1
Affiliation
SnO2 is one of the most promising catalysts for CO2 electroreduction. However, the intrinsic low electrical conductivity and weak CO2 adsorption and activation capability have rendered the reaction kinetically sluggish and inefficient. To surmount these hurdles, herein, W was incorporated into SnO2 nanosheets to modulate the electronic structures. Compared with pristine SnO2, the p-band centre of W-doped SnO2 was elevated towards the Fermi level, accompanied by the reduction in the band gap and work function. As a result, both the CO2 adsorption and the electron transfer process were promoted, thus lowering the activation energy barrier for CO2 reduction. Benefitting from these, a maximum faradaic efficiency of 87.8% was achieved for HCOOH at −0.9 V vs. the RHE. Meanwhile, the current density and energy efficiency approached 20.92 mA cm−2 and 60%, respectively. Such performances could sustain for 14 h without obvious fading and exceeded pristine SnO2 and most reported Sn-based catalysts. Tafel slope and reaction order analyses further suggested that the reaction proceeded following a stepwise electron–proton transfer pathway with the formation of CO2˙− as the rate determining step. This work demonstrated the effectiveness of electronic structure tuning in promoting the catalytic performances of p-block metal oxides and contributed to the development of efficient catalysts for sustainable energy conversion and carbon neutrality.
中文翻译:
通过掺入 W 提高 SnO2 纳米片的 p 带中心以促进 CO2 电还原
SnO 2是最有前途的CO 2电还原催化剂之一。然而,固有的低电导率和弱的 CO 2吸附和活化能力使反应动力学缓慢且效率低下。为了克服这些障碍,在本文中,W 被结合到 SnO 2纳米片中以调节电子结构。与原始 SnO 2相比,W 掺杂的 SnO 2的 p 带中心向费米能级提升,伴随着带隙和功函数的降低。结果,促进了 CO 2吸附和电子转移过程,从而降低了 CO 2的活化能垒减少。受益于这些,与RHE相比,-0.9 V 的 HCOOH 实现了 87.8% 的最大法拉第效率。同时,电流密度和能量效率分别接近 20.92 mA cm -2和 60%。这样的性能可以持续 14 小时而没有明显的褪色,并且超过了原始的 SnO 2和大多数报道的 Sn 基催化剂。Tafel 斜率和反应级数分析进一步表明反应遵循逐步电子-质子转移途径进行,并形成 CO 2 ˙ -作为速率确定步骤。这项工作证明了电子结构调整在提高 p 区金属氧化物催化性能方面的有效性,并有助于开发用于可持续能源转换和碳中和的高效催化剂。
更新日期:2021-12-20
中文翻译:
通过掺入 W 提高 SnO2 纳米片的 p 带中心以促进 CO2 电还原
SnO 2是最有前途的CO 2电还原催化剂之一。然而,固有的低电导率和弱的 CO 2吸附和活化能力使反应动力学缓慢且效率低下。为了克服这些障碍,在本文中,W 被结合到 SnO 2纳米片中以调节电子结构。与原始 SnO 2相比,W 掺杂的 SnO 2的 p 带中心向费米能级提升,伴随着带隙和功函数的降低。结果,促进了 CO 2吸附和电子转移过程,从而降低了 CO 2的活化能垒减少。受益于这些,与RHE相比,-0.9 V 的 HCOOH 实现了 87.8% 的最大法拉第效率。同时,电流密度和能量效率分别接近 20.92 mA cm -2和 60%。这样的性能可以持续 14 小时而没有明显的褪色,并且超过了原始的 SnO 2和大多数报道的 Sn 基催化剂。Tafel 斜率和反应级数分析进一步表明反应遵循逐步电子-质子转移途径进行,并形成 CO 2 ˙ -作为速率确定步骤。这项工作证明了电子结构调整在提高 p 区金属氧化物催化性能方面的有效性,并有助于开发用于可持续能源转换和碳中和的高效催化剂。