当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Large-Scale Synthesis of p–n Heterojunction Bi2O3/TiO2 Nanostructures as Photocatalysts for Removal of Antibiotics under Visible Light
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2021-12-16 , DOI: 10.1021/acsanm.1c03851 Jinyu Chen 1 , Tao Tang 1 , Weiwei Feng 2 , Xiang Liu 3 , Zhengliang Yin 1 , Xuanxuan Zhang 1 , Juanrong Chen 2 , Shunsheng Cao 1
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2021-12-16 , DOI: 10.1021/acsanm.1c03851 Jinyu Chen 1 , Tao Tang 1 , Weiwei Feng 2 , Xiang Liu 3 , Zhengliang Yin 1 , Xuanxuan Zhang 1 , Juanrong Chen 2 , Shunsheng Cao 1
Affiliation
Although photocatalysis has been proved to be a promising technology in solving various environmental problems, the preparation of visible light-driven photocatalysts on a large scale in a simple and sustainable manner still remains a technical challenge. Here, we demonstrate a simple one-pot method for the large-scale synthesis of a novel Bi2O3/TiO2 visible light-driven photocatalyst by coupling low-cost TiO2 with strong visible-light absorption of Bi2O3. The as-synthesized Bi2O3/TiO2 photocatalyst exhibits efficient charge separation due to the formation of a p–n heterojunction. Additionally, the porous nanostructure of Bi2O3/TiO2 provides high surface area and abundant active sites, realizing the complete degradation (100%) of tetracyclines under visible light (λ > 420 nm), which successfully breaks through the bottleneck of incomplete degradation of tetracyclines under visible light irradiation for most of the reported photocatalysts. Notably, since our method is based on the one-pot synthesis without any pretreatment procedure for the precursors of Bi2O3 and TiO2, it is very suitable for the development of large-scale synthesis by using a big reactor, producing up to 23.9 g of Bi2O3/TiO2 nanocatalyst in a single synthesis, which indicates its considerable potential for further scale-up production. Therefore, this study opens a new window for the large-scale synthesis of other visible light-driven photocatalysts with excellent photocatalytic performances.
中文翻译:
大规模合成 p-n 异质结 Bi2O3/TiO2 纳米结构作为可见光下抗生素去除的光催化剂
尽管光催化已被证明是解决各种环境问题的有前景的技术,但以简单且可持续的方式大规模制备可见光驱动的光催化剂仍然是一项技术挑战。在这里,我们展示了一种简单的一锅法,通过将低成本的 TiO 2与 Bi 2 O 3的强可见光吸收相结合,大规模合成新型 Bi 2 O 3 /TiO 2可见光驱动的光催化剂。合成的Bi 2 O 3 /TiO 2由于形成了 ap-n 异质结,光催化剂表现出有效的电荷分离。此外,Bi 2 O 3 /TiO 2的多孔纳米结构提供了高比表面积和丰富的活性位点,实现了四环素类在可见光(λ > 420 nm)下的完全降解(100%),成功突破了不完全降解的瓶颈。对于大多数报道的光催化剂,在可见光照射下降解四环素。值得注意的是,由于我们的方法基于一锅法合成,没有对 Bi 2 O 3和 TiO 2的前体进行任何预处理。,非常适合大型反应器的大规模合成发展,单次合成可生产高达23.9 g的Bi 2 O 3 /TiO 2纳米催化剂,这表明其进一步规模化生产的潜力很大。因此,本研究为大规模合成其他具有优异光催化性能的可见光驱动光催化剂打开了新窗口。
更新日期:2022-01-28
中文翻译:
大规模合成 p-n 异质结 Bi2O3/TiO2 纳米结构作为可见光下抗生素去除的光催化剂
尽管光催化已被证明是解决各种环境问题的有前景的技术,但以简单且可持续的方式大规模制备可见光驱动的光催化剂仍然是一项技术挑战。在这里,我们展示了一种简单的一锅法,通过将低成本的 TiO 2与 Bi 2 O 3的强可见光吸收相结合,大规模合成新型 Bi 2 O 3 /TiO 2可见光驱动的光催化剂。合成的Bi 2 O 3 /TiO 2由于形成了 ap-n 异质结,光催化剂表现出有效的电荷分离。此外,Bi 2 O 3 /TiO 2的多孔纳米结构提供了高比表面积和丰富的活性位点,实现了四环素类在可见光(λ > 420 nm)下的完全降解(100%),成功突破了不完全降解的瓶颈。对于大多数报道的光催化剂,在可见光照射下降解四环素。值得注意的是,由于我们的方法基于一锅法合成,没有对 Bi 2 O 3和 TiO 2的前体进行任何预处理。,非常适合大型反应器的大规模合成发展,单次合成可生产高达23.9 g的Bi 2 O 3 /TiO 2纳米催化剂,这表明其进一步规模化生产的潜力很大。因此,本研究为大规模合成其他具有优异光催化性能的可见光驱动光催化剂打开了新窗口。