Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atomic Layer MoTe2 Field-Effect Transistors and Monolithic Logic Circuits Configured by Scanning Laser Annealing
ACS Nano ( IF 15.8 ) Pub Date : 2021-12-16 , DOI: 10.1021/acsnano.1c07169 Xia Liu 1 , Arnob Islam 1 , Ning Yang 2 , Bradley Odhner 3 , Mary Anne Tupta 3 , Jing Guo 2 , Philip X-L Feng 1, 2
ACS Nano ( IF 15.8 ) Pub Date : 2021-12-16 , DOI: 10.1021/acsnano.1c07169 Xia Liu 1 , Arnob Islam 1 , Ning Yang 2 , Bradley Odhner 3 , Mary Anne Tupta 3 , Jing Guo 2 , Philip X-L Feng 1, 2
Affiliation
Atomically thin semiconductors such as transition metal dichalcogenides have recently enabled diverse devices in the emerging two-dimensional (2D) electronics. While scalable 2D electronics demand monolithic integrated circuits consisting of complementary p-type and n-type transistors, conventional p-type and n-type doping in desired regions, monolithically in the same semiconducting atomic layers, remains elusive or impractical. Here, we report on an agile, high-precision scanning laser annealing approach to realizing 2D monolithic complementary logic circuits on atomically thin MoTe2, by reliably designating p-type and n-type transport polarity in the constituent transistors via localized laser annealing and modification of their Schottky contacts. Pristine p-type field-effect transistors (FETs) transform into n-type ones upon controlled laser annealing on their source/drain gold electrodes, exhibiting a mobility of 96.5 cm2 V–1 s–1 (the highest known to date) and an On/Off ratio of 106. Elucidation and validation of such an on-demand configuration of polarity in MoTe2 FETs further enable the construction and demonstration of essential logic circuits, including both inverter and NOR gates. This dopant-free, spatially precise scanning laser annealing approach to configuring monolithic complementary logic integrated circuits may enable programmable functions in 2D semiconductors, exhibiting potential for additively manufactured, scalable 2D electronics.
中文翻译:
通过扫描激光退火配置的原子层 MoTe2 场效应晶体管和单片逻辑电路
诸如过渡金属二硫属化物之类的原子级薄半导体最近使新兴的二维 (2D) 电子设备中的各种设备成为可能。虽然可扩展的 2D 电子产品需要由互补 p 型和 n 型晶体管组成的单片集成电路,但在所需区域中的常规 p 型和 n 型掺杂,单片在相同的半导体原子层中,仍然难以捉摸或不切实际。在这里,我们敏捷,高精度扫描激光退火的方法报告给上原子级薄的微尘实现2D单片互补逻辑电路2,通过在构成晶体管可靠地指定的p型和n型传输极性通过局部激光退火和肖特基接触的修改。原始 p 型场效应晶体管 (FET) 在其源极/漏极金电极上进行受控激光退火后转变为 n 型,表现出 96.5 cm 2 V –1 s –1(迄今为止已知的最高)的迁移率和10 6的开/关比。阐明和验证 MoTe 2中这种按需极性配置FET 进一步支持基本逻辑电路的构建和演示,包括反相器和或非门。这种用于配置单片互补逻辑集成电路的无掺杂、空间精确的扫描激光退火方法可以实现 2D 半导体中的可编程功能,显示出增材制造、可扩展的 2D 电子产品的潜力。
更新日期:2021-12-28
中文翻译:
通过扫描激光退火配置的原子层 MoTe2 场效应晶体管和单片逻辑电路
诸如过渡金属二硫属化物之类的原子级薄半导体最近使新兴的二维 (2D) 电子设备中的各种设备成为可能。虽然可扩展的 2D 电子产品需要由互补 p 型和 n 型晶体管组成的单片集成电路,但在所需区域中的常规 p 型和 n 型掺杂,单片在相同的半导体原子层中,仍然难以捉摸或不切实际。在这里,我们敏捷,高精度扫描激光退火的方法报告给上原子级薄的微尘实现2D单片互补逻辑电路2,通过在构成晶体管可靠地指定的p型和n型传输极性通过局部激光退火和肖特基接触的修改。原始 p 型场效应晶体管 (FET) 在其源极/漏极金电极上进行受控激光退火后转变为 n 型,表现出 96.5 cm 2 V –1 s –1(迄今为止已知的最高)的迁移率和10 6的开/关比。阐明和验证 MoTe 2中这种按需极性配置FET 进一步支持基本逻辑电路的构建和演示,包括反相器和或非门。这种用于配置单片互补逻辑集成电路的无掺杂、空间精确的扫描激光退火方法可以实现 2D 半导体中的可编程功能,显示出增材制造、可扩展的 2D 电子产品的潜力。