当前位置:
X-MOL 学术
›
Anal. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Invoking Cathodic Photoelectrochemistry through a Spontaneously Coordinated Electron Transporter: A Proof of Concept Toward Signal Transduction for Bioanalysis
Analytical Chemistry ( IF 6.7 ) Pub Date : 2021-12-15 , DOI: 10.1021/acs.analchem.1c04750 Lingling Zhao 1 , Yanru Chen 1 , Xiuming Wu 1 , Zaijun Li 1 , Yuming Dong 1 , Guang-Li Wang 1, 2
Analytical Chemistry ( IF 6.7 ) Pub Date : 2021-12-15 , DOI: 10.1021/acs.analchem.1c04750 Lingling Zhao 1 , Yanru Chen 1 , Xiuming Wu 1 , Zaijun Li 1 , Yuming Dong 1 , Guang-Li Wang 1, 2
Affiliation
Most of the cathodic photoelectrochemical (PEC) bioassays rely on electron accepting molecules for signal stimuli; unfortunately, the performances of which are still undesirable. New signal transduction strategies are still highly expected for the further development of cathodic photoelectrochemistry as a potentially competitive method. This work represents a new concept of invoked cathodic photoelectrochemistry by a spontaneously formed electron transporter for innovative operation of the sensing strategy. Specifically, the hexacyanoferrate(II) in solution easily self–coordinated with CuO nanomaterials and formed electron transporting copper hexacyanoferrate (CuHCF) on the surface, which endowed improved carrier separation for presenting augmented photocurrent readout. Exemplified by the T4 polynucleotide kinase (T4 PNK) and its inhibitors as targets, a homogenous cathodic PEC biosensing platform was achieved with the distinctive merits of label-free, immobilization-free, and split-mode readout. The mechanism revealed here provided a totally different perspective for signal transduction in cathodic photoelectrochemistry. Hopefully, it may stimulate more interests in the design and construction of semiconductor/transporter counterparts for exquisite operation of photocathodic bioanalysis.
中文翻译:
通过自发协调的电子转运蛋白调用阴极光电化学:生物分析信号转导概念的证明
大多数阴极光电化学 (PEC) 生物测定依赖于电子接受分子进行信号刺激;不幸的是,其表现仍然不理想。新的信号转导策略对于阴极光电化学作为一种潜在的竞争方法的进一步发展仍然寄予厚望。这项工作代表了一种新概念,即通过自发形成的电子传输体调用阴极光电化学,以实现传感策略的创新操作。具体而言,溶液中的六氰基铁酸盐(II)很容易与 CuO 纳米材料自配位,并在表面形成电子传输的六氰基铁酸盐(CuHCF),这赋予了改进的载流子分离以呈现增强的光电流读数。以 T4 多核苷酸激酶 (T4 PNK) 及其抑制剂作为靶标为例,实现了同质阴极 PEC 生物传感平台,其具有无标记、无固定化和分离模式读出的独特优点。这里揭示的机制为阴极光电化学中的信号转导提供了一个完全不同的视角。希望它可以激发更多人对半导体/传输器对应物的设计和构建的兴趣,以实现光阴极生物分析的精细操作。
更新日期:2021-12-28
中文翻译:
通过自发协调的电子转运蛋白调用阴极光电化学:生物分析信号转导概念的证明
大多数阴极光电化学 (PEC) 生物测定依赖于电子接受分子进行信号刺激;不幸的是,其表现仍然不理想。新的信号转导策略对于阴极光电化学作为一种潜在的竞争方法的进一步发展仍然寄予厚望。这项工作代表了一种新概念,即通过自发形成的电子传输体调用阴极光电化学,以实现传感策略的创新操作。具体而言,溶液中的六氰基铁酸盐(II)很容易与 CuO 纳米材料自配位,并在表面形成电子传输的六氰基铁酸盐(CuHCF),这赋予了改进的载流子分离以呈现增强的光电流读数。以 T4 多核苷酸激酶 (T4 PNK) 及其抑制剂作为靶标为例,实现了同质阴极 PEC 生物传感平台,其具有无标记、无固定化和分离模式读出的独特优点。这里揭示的机制为阴极光电化学中的信号转导提供了一个完全不同的视角。希望它可以激发更多人对半导体/传输器对应物的设计和构建的兴趣,以实现光阴极生物分析的精细操作。