当前位置:
X-MOL 学术
›
Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic–Electronic Conductors for Organic Electrochemical Transistors
Chemical Reviews ( IF 51.4 ) Pub Date : 2021-12-13 , DOI: 10.1021/acs.chemrev.1c00266 Nadzeya A Kukhta 1 , Adam Marks 2 , Christine K Luscombe 1, 3, 4
Chemical Reviews ( IF 51.4 ) Pub Date : 2021-12-13 , DOI: 10.1021/acs.chemrev.1c00266 Nadzeya A Kukhta 1 , Adam Marks 2 , Christine K Luscombe 1, 3, 4
Affiliation
Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure–property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic–electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.
中文翻译:
改进有机电化学晶体管有机混合离子电子导体中的电荷注入和离子传导的分子设计策略
扩展生物学和电子学相互结合的工具箱是生物电子学的主要目标。无可否认,有机电化学晶体管(OECT)已成为混合导电材料的主要器件,提供令人印象深刻的跨导特性以及相对简单的器件架构。在这篇综述中,我们通过彻底的结构-性能研究和对当前挑战的分析,重点讨论生物电子应用混合导体领域的最新材料发展。重新审视了 OECT 的基本操作原理,并重点介绍了表征方法。强调了有机混合离子电子导体(OMIEC)当前的生物电子应用。讨论了 OECT 通道材料的性能和操作稳定性方面的挑战以及缓解这些挑战的潜在策略。进一步扩展,概述了用于 p 型和 n 型通道操作的混合导电材料的历史,详细介绍了为经常生产更高性能的 OECT 器件而克服的合成挑战和里程碑。总结了多个研究小组的累积工作,并提取了综合设计策略,提出了一系列设计原则,可用于进一步推动未来 OMIEC 材料的品质因数性能值。
更新日期:2021-12-13
中文翻译:
改进有机电化学晶体管有机混合离子电子导体中的电荷注入和离子传导的分子设计策略
扩展生物学和电子学相互结合的工具箱是生物电子学的主要目标。无可否认,有机电化学晶体管(OECT)已成为混合导电材料的主要器件,提供令人印象深刻的跨导特性以及相对简单的器件架构。在这篇综述中,我们通过彻底的结构-性能研究和对当前挑战的分析,重点讨论生物电子应用混合导体领域的最新材料发展。重新审视了 OECT 的基本操作原理,并重点介绍了表征方法。强调了有机混合离子电子导体(OMIEC)当前的生物电子应用。讨论了 OECT 通道材料的性能和操作稳定性方面的挑战以及缓解这些挑战的潜在策略。进一步扩展,概述了用于 p 型和 n 型通道操作的混合导电材料的历史,详细介绍了为经常生产更高性能的 OECT 器件而克服的合成挑战和里程碑。总结了多个研究小组的累积工作,并提取了综合设计策略,提出了一系列设计原则,可用于进一步推动未来 OMIEC 材料的品质因数性能值。