当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Li6.4La3Zr1.4Ta0.6O12/Star-Shaped Hybrid Polyhedral Oligomeric Cage Silsesquioxane Polymer Composite Electrolytes for All-Solid-State Lithium Metal Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-12-12 , DOI: 10.1021/acsaem.1c03345 Jingyu Ma 1 , Xiaoyan Ma 1 , Chengchen Luo 1 , Xinghua Guan 1 , Fang Chen 1 , Yibo Chen 1 , Jingwen Tu 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-12-12 , DOI: 10.1021/acsaem.1c03345 Jingyu Ma 1 , Xiaoyan Ma 1 , Chengchen Luo 1 , Xinghua Guan 1 , Fang Chen 1 , Yibo Chen 1 , Jingwen Tu 1
Affiliation
The low ionic conductivity and mechanical strength are important factors impeding the application of solid polymer electrolytes. Herein, we design synthesize an organic/inorganic hybrid star-shaped polymer of octa(poly(methyl methacrylate)–poly(poly(ethylene glycol) methyl ether methacrylate) cage oligomeric silsesquioxanes (POSS–(PMMA–PPEGMEM)8) by one-step free atom transfer radical polymerization (ATRP), and compound with Li6.4La3Zr1.4Ta0.6O12 (LLZTO) to prepare a composite polymer electrolyte membrane (LP-CPEM). The star-shaped structure of the POSS–(PMMA–PPEGMEM)8 induced by octachloropropyl polyhedral cage oligomeric silsesquioxane (OCP-POSS) is beneficial to reduce the crystallinity of polymer and increase the movement of the polymer chain to form a continuous interconnected ion migration channel. The LLZTO fillers in the LP-CPEM could simultaneously hinder the orderly arrangement of polymer chains and provide other ion transport paths to increase the ion conductivity of LP-CPEM. The LP-CPEM with 7.5 wt % LLZTO has higher ionic conductivity of 3.8 × 10–4 S cm–1 at 30 °C and high mechanical strength (5.2 MPa). Additionally, Li/Li symmetric cells demonstrate stable constant current charging/discharging during 1000 h at 0.1 mA cm–2, and the all-solid-state batteries fabricated by the LP-CPEM exhibit good cyclic stability. It is promising for the development of next-generation high-safety all-solid-state lithium metal batteries.
中文翻译:
用于全固态锂金属电池的 Li6.4La3Zr1.4Ta0.6O12/星形杂化多面体低聚笼倍半硅氧烷聚合物复合电解质
低离子电导率和机械强度是阻碍固体聚合物电解质应用的重要因素。在此,我们设计合成了八(聚(甲基丙烯酸甲酯)-聚(聚(乙二醇)甲基醚甲基丙烯酸酯)笼状低聚倍半硅氧烷(POSS-(PMMA-PPEGMEM)8)的有机/无机杂化星形聚合物,通过一个-逐步游离原子转移自由基聚合(ATRP),并与 Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) 复合制备复合聚合物电解质膜(LP-CPEM)。 –PPEGMEM) 8八氯丙基多面体笼型低聚倍半硅氧烷(OCP-POSS)诱导的离子迁移有利于降低聚合物的结晶度,增加聚合物链的运动,形成连续互连的离子迁移通道。LP-CPEM 中的 LLZTO 填料可以同时阻碍聚合物链的有序排列并提供其他离子传输路径以提高 LP-CPEM 的离子电导率。含有 7.5 wt% LLZTO 的 LP-CPEM在 30 °C 下具有更高的离子电导率(3.8 × 10 –4 S cm –1)和高机械强度(5.2 MPa)。此外,Li/Li 对称电池在 0.1 mA cm –2 下在 1000 小时内表现出稳定的恒流充电/放电,并且由LP-CPEM制造的全固态电池表现出良好的循环稳定性。对下一代高安全性全固态锂金属电池的发展大有希望。
更新日期:2021-12-27
中文翻译:
用于全固态锂金属电池的 Li6.4La3Zr1.4Ta0.6O12/星形杂化多面体低聚笼倍半硅氧烷聚合物复合电解质
低离子电导率和机械强度是阻碍固体聚合物电解质应用的重要因素。在此,我们设计合成了八(聚(甲基丙烯酸甲酯)-聚(聚(乙二醇)甲基醚甲基丙烯酸酯)笼状低聚倍半硅氧烷(POSS-(PMMA-PPEGMEM)8)的有机/无机杂化星形聚合物,通过一个-逐步游离原子转移自由基聚合(ATRP),并与 Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) 复合制备复合聚合物电解质膜(LP-CPEM)。 –PPEGMEM) 8八氯丙基多面体笼型低聚倍半硅氧烷(OCP-POSS)诱导的离子迁移有利于降低聚合物的结晶度,增加聚合物链的运动,形成连续互连的离子迁移通道。LP-CPEM 中的 LLZTO 填料可以同时阻碍聚合物链的有序排列并提供其他离子传输路径以提高 LP-CPEM 的离子电导率。含有 7.5 wt% LLZTO 的 LP-CPEM在 30 °C 下具有更高的离子电导率(3.8 × 10 –4 S cm –1)和高机械强度(5.2 MPa)。此外,Li/Li 对称电池在 0.1 mA cm –2 下在 1000 小时内表现出稳定的恒流充电/放电,并且由LP-CPEM制造的全固态电池表现出良好的循环稳定性。对下一代高安全性全固态锂金属电池的发展大有希望。