热带树种越来越需要使用年轮对树木生长进行长期分析。这些研究的基础传统上是年轮边界的解剖学识别。然而,对这些年轮结构的互补物理和化学木材特性的探索很少。在这里,我们探讨了木材密度特征与化学元素(S、K、Ca、Mn)之间的关系,这些化学元素与来自亚马逊盆地南部非水淹林的 12 种热带树种的年轮形成有关。对每个物种使用横向木材切片来确定:1) 宏观区别(径向生长和木材密度),2) 血管、轴向和射线薄壁组织(解剖学)的微观分析和 3) X 射线密度测定法(物理)和 X-射线荧光(化学)。对于某些物种,木材密度、Ca 和 Mn 含量的分布显示了年际和年际模式,可以定义和表征树木年轮的生长边界。Ca、K、S主要分布在轴向薄壁细胞和血管周围,而Mn主要分布在纤维中。我们的结果表明,树木年轮宽度、密度和 Ca、K 和 Mn 浓度之间存在显着的物种特异性相关性。一些亚马逊物种的密度和化学特征提供的解剖特征和补充信息可以代表改善年轮边界定义和提高对长期生长和生理模式的理解的有价值的代理。Ca 和 Mn 含量显示出年内和年际模式,可以定义和表征树木年轮的生长边界。Ca、K、S主要分布在轴向薄壁细胞和血管周围,而Mn主要分布在纤维中。我们的结果表明,树木年轮宽度、密度和 Ca、K 和 Mn 浓度之间存在显着的物种特异性相关性。一些亚马逊物种的密度和化学特征提供的解剖特征和补充信息可以代表改善年轮边界定义和提高对长期生长和生理模式的理解的有价值的代理。Ca 和 Mn 含量显示出年内和年际模式,可以定义和表征树木年轮的生长边界。Ca、K、S主要分布在轴向薄壁细胞和血管周围,而Mn主要分布在纤维中。我们的结果表明,树木年轮宽度、密度和 Ca、K 和 Mn 浓度之间存在显着的物种特异性相关性。一些亚马逊物种的密度和化学特征提供的解剖特征和补充信息可以代表改善年轮边界定义和提高对长期生长和生理模式的理解的有价值的代理。我们的结果表明,树木年轮宽度、密度和 Ca、K 和 Mn 浓度之间存在显着的物种特异性相关性。一些亚马逊物种的密度和化学特征提供的解剖特征和补充信息可以代表改善年轮边界定义和提高对长期生长和生理模式的理解的有价值的代理。我们的结果表明,树木年轮宽度、密度和 Ca、K 和 Mn 浓度之间存在显着的物种特异性相关性。一些亚马逊物种的密度和化学特征提供的解剖特征和补充信息可以代表改善年轮边界定义和提高对长期生长和生理模式的理解的有价值的代理。
"点击查看英文标题和摘要"
Exploring wood anatomy, density and chemistry profiles to understand the tree-ring formation in Amazonian tree species
Long-term analysis of tree growth using annual tree rings is increasingly in demand for tropical tree species. The basis of these studies has traditionally been the anatomical identification of the annual ring boundary. However, the structure of these annual rings has been sparsely explored for complementary physical and chemical wood traits. Here, we explore the relationships among wood density features and chemical elements (S, K, Ca, Mn) involved in the annual tree ring formation of 12 tropical tree species from non-flooded forest in the southern Amazon basin. Transverse wood sections were used for each species to determine: 1) macroscopic distinction (radial growth and wood density), 2) microscopic analyse of vessels, axial and ray parenchyma (anatomy) and 3) X-ray densitometry (physical) and X-ray fluorescence (chemical). For some species, the profiles of wood density, and Ca and Mn content showed intra- and inter-annual patterns that allowed to define and characterize the growth boundary of tree rings. Ca, K and S were mainly distributed in axial parenchyma cells, and around vessels, whereas, Mn was mainly distributed in fibres. Our results showed significant species-specific correlations between tree-ring width, density and concentrations of Ca, K and Mn. The anatomical characterization and the complementary information provided by the density and chemical profiles in some Amazonian species can represent a valuable proxy to improve the definition of annual ring-boundaries and improve the understanding of long-term growth and physiological patterns.