Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2021-12-10 , DOI: 10.1016/j.jechem.2021.12.006 Li-Ming Cao 1 , Jia Zhang 1 , Li-Wen Ding 1 , Zi-Yi Du 1 , Chun-Ting He 1, 2
It is critical to synthesize high-efficiency electrocatalysts to boost the performance of electrolyzed water to meet the requirements of industrial applications. Metal-organic frameworks (MOFs) can function as ideal molecular platforms for the design of highly reactive transition metal phosphides (TMPs), a kind of candidates for high-efficiently electrocatalytic water splitting. The intrinsic activity of the electrocatalysts can be greatly improved via modulating the electronic structure of the catalytic center through the MOF precursors/templates. Moreover, the carbon layer converted in-situ by the organic ligands can not only protect the TMPs from being degraded in the harsh electrochemical environments, but also avoid agglomeration of the catalysts, thereby promoting their activities and stabilities. Furthermore, heteroatom-containing ligands can incorporate N, S or P, etc., atoms into the carbon matrixes after conversion, regulating the coordination microenvironments of the active centers as well as their electronic structures. In this review, we first summarized the latest developments in MOF-derived TMPs by the unique advantages in metal, organic ligand, and morphology regulation for electrocatalytic water splitting. Secondly, we concluded the critical scientific issues currently facing for designing state-of-the-art TMP-based electrocatalysts. Finally, we presented an outlook on this research area, encompassing electrocatalyst construction, catalytic mechanism research, etc.
中文翻译:
用于电催化水分解的金属有机骨架衍生的过渡金属磷化物
合成高效电催化剂以提高电解水的性能以满足工业应用的要求至关重要。金属有机骨架(MOFs)可以作为设计高反应性过渡金属磷化物(TMPs)的理想分子平台,TMPs是一种高效电催化水分解的候选物。通过 MOF 前体/模板调节催化中心的电子结构,可以大大提高电催化剂的内在活性。此外,有机配体原位转化的碳层不仅可以保护TMPs在恶劣的电化学环境中不被降解,还可以避免催化剂的团聚,从而提高其活性和稳定性。此外,含杂原子的配体可以在转化后将 N、S 或 P 等原子结合到碳基质中,调节活性中心的配位微环境及其电子结构。在这篇综述中,我们首先通过金属、有机配体和电催化水分解形态调控的独特优势,总结了 MOF 衍生的 TMP 的最新进展。其次,我们总结了目前设计最先进的基于 TMP 的电催化剂所面临的关键科学问题。最后,我们对该研究领域进行了展望,包括电催化剂构建、催化机理研究等。调节活性中心的配位微环境及其电子结构。在这篇综述中,我们首先通过金属、有机配体和电催化水分解形态调控的独特优势,总结了 MOF 衍生的 TMP 的最新进展。其次,我们总结了目前设计最先进的基于 TMP 的电催化剂所面临的关键科学问题。最后,我们对该研究领域进行了展望,包括电催化剂构建、催化机理研究等。调节活性中心的配位微环境及其电子结构。在这篇综述中,我们首先通过金属、有机配体和电催化水分解形态调控的独特优势,总结了 MOF 衍生的 TMP 的最新进展。其次,我们总结了目前设计最先进的基于 TMP 的电催化剂所面临的关键科学问题。最后,我们对该研究领域进行了展望,包括电催化剂构建、催化机理研究等。我们总结了当前设计最先进的基于 TMP 的电催化剂所面临的关键科学问题。最后,我们对该研究领域进行了展望,包括电催化剂构建、催化机理研究等。我们总结了当前设计最先进的基于 TMP 的电催化剂所面临的关键科学问题。最后,我们对该研究领域进行了展望,包括电催化剂构建、催化机理研究等。