Nano Research ( IF 9.5 ) Pub Date : 2021-08-28 , DOI: 10.1007/s12274-021-3676-5 Yuanyang Xie 1 , Chang Yu 1 , Wei Guo 1 , Lin Ni 1 , Zhao Wang 1 , Jinhe Yu 1 , Le Yang 1 , Rong Fu 1 , Kunlun Liu 1 , Jieshan Qiu 1
Amorphous carbon derived from biomass unusually combines the merits of large specific surface area and abundant micropores, offering massive anchoring points for ion adsorption in electrolyte. Nevertheless, the short-range ordered structure in amorphous carbon hinders the fast electron transfer. Conversely, graphitic carbon with long-range ordered structure is beneficial for electron transfer. Thus, a low-cost strategy is required to marry hierarchical porous structure with long-range ordered structure, resulting in a long/short-range interconnected porous carbon and then leading to fast ion and electron transfer. Herein, we modified the solid-phase conversion process of biomass by employing the features of liquid-phase carbonization for petroleum asphalt. With the assistance of asphalt, the large specific surface area (>2,000 m2·g−1), high ratio of mesopores (ca. 60%) together with long-range ordered structure are in-situ created in as-made porous carbon. Thanks to the well configured structure in small scale, the as-made co-converted carbon can be operated in high-viscosity EMIMBF4 electrolyte with a superior capacitance (315 F·g−1@1 A·g−1). Besides, the as-assembled symmetric supercapacitor can deliver a super-high specific energy of 174 Wh·kg−1@2.0 kW·kg−1. This work provides a new version for designing highly porous biomass-derived carbon with long/short-range alternating structure at molecular level.
中文翻译:
用于高能量密度超级电容器的具有明确介孔的长/短程互连碳
源自生物质的无定形碳异常地结合了大比表面积和丰富的微孔的优点,为电解质中的离子吸附提供了大量的锚定点。然而,无定形碳中的短程有序结构阻碍了快速电子转移。相反,具有长程有序结构的石墨碳有利于电子转移。因此,需要一种低成本的策略来将分级多孔结构与长程有序结构结合起来,从而形成长/短程互连的多孔碳,然后实现快速的离子和电子转移。在此,我们利用石油沥青液相碳化的特点,对生物质的固相转化工艺进行了改进。在沥青的帮助下,大比表面积(>2,000 m2 ·g -1 ),高比例的介孔(约 60%)和长程有序结构是在制成的多孔碳中原位产生的。由于小规模结构良好,共转化的碳可以在具有优异电容(315 F·g -1 @1 A·g -1)的高粘度EMIMBF 4电解质中运行。此外,组装好的对称超级电容器可以提供174 Wh·kg -1 @2.0 kW·kg -1的超高比能量。这项工作为在分子水平上设计具有长/短程交替结构的高度多孔生物质衍生碳提供了新的思路。