Separation and Purification Technology ( IF 8.1 ) Pub Date : 2021-11-30 , DOI: 10.1016/j.seppur.2021.120231 Du Guo 1 , Xinye Jiang 1 , Mingzhu Guo 1 , Ming Zeng 1 , Nan Wu 2 , Linlin Hao 1 , Chang Wang 1
Recently, hydrocyclone separator is introduced into the field of aerobic granular sludge (AGS), and applied in wastewater treatment plant to recover the dense sludge. However, the function of hydrocyclone separator for AGS cultivation is still unclear. Thus, the granulating and granular separation efficiencies of hydrocyclone separator were investigated from perspectives of experiment and hydrodynamic modelling. By comparing traditional sequencing batch reactor, the introduction of hydrocyclone separator greatly decreased the mixed liquid suspended sludge by maximum 61%, although it could improve the sludge settling performance and reduce SVI, no matter operational time of separator high or low. The reason might be attributed to strong shear force and centrifugal force provided by hydrocyclone separator. Therefore, the inlet water velocity, a factor of shear stress, was studied. The medium water velocity of 0.3 m/s contributed to appropriate tangential velocity and static pressure, reaching the optimal granular separation efficiency that was larger than 97% for the particle diameter over 400 μm. Besides, carrier particles in previous studies were summarized and found to enhance AGS formation in short time (15 to 54 days). When they were combined with hydrocyclone separator for continuous AGS cultivation, the carrier particles with large particle size (GAC, ceramsite, etc) were proposed to be used, instead of biochar or graphite oxide nanoparticle. This study explored the feasibility of hydrocyclone separator to culture AGS, which is helpful to realize the continuous AGS cultivation.
中文翻译:
水力旋流分离器对好氧颗粒污泥形成和分离的作用:评价造粒效率和模拟水动力行为
近年来,水力旋流分离器被引入好氧颗粒污泥(AGS)领域,并应用于污水处理厂回收稠密污泥。然而,水力旋流分离器在AGS栽培中的作用尚不清楚。因此,从实验和流体动力学建模的角度研究了水力旋流分离器的造粒和颗粒分离效率。与传统的序批式反应器相比,水力旋流分离器的引入使混合液悬浮污泥最大减少了61%,尽管它可以提高污泥沉降性能并降低SVI,无论分离器运行时间长短。其原因可能是旋流分离器提供的强大剪切力和离心力。因此,进水速度,研究了剪切应力的一个因素。0.3 m/s的中等水流速度有助于适当的切向速度和静压,达到最佳颗粒分离效率,粒径超过400 μm时大于97%。此外,总结了以往研究中的载体颗粒,发现可以在短时间内(15 至 54 天)增强 AGS 的形成。当它们与水力旋流分离器结合进行AGS连续培养时,建议使用大粒径的载体颗粒(GAC、陶粒等),而不是生物炭或氧化石墨纳米颗粒。本研究探讨了水力旋流分离器培养AGS的可行性,有助于实现AGS的连续培养。3 m/s 有助于适当的切向速度和静压,达到最佳颗粒分离效率,对于超过 400 μm 的粒径,大于 97%。此外,总结了以往研究中的载体颗粒,发现可以在短时间内(15 至 54 天)增强 AGS 的形成。当它们与水力旋流分离器结合进行AGS连续培养时,建议使用大粒径的载体颗粒(GAC、陶粒等),而不是生物炭或氧化石墨纳米颗粒。本研究探讨了水力旋流分离器培养AGS的可行性,有助于实现AGS的连续培养。3 m/s 有助于适当的切向速度和静压,达到最佳颗粒分离效率,对于超过 400 μm 的粒径,大于 97%。此外,总结了以往研究中的载体颗粒,发现可以在短时间内(15 至 54 天)增强 AGS 的形成。当它们与水力旋流分离器结合进行AGS连续培养时,建议使用大粒径的载体颗粒(GAC、陶粒等),而不是生物炭或氧化石墨纳米颗粒。本研究探讨了水力旋流分离器培养AGS的可行性,有助于实现AGS的连续培养。总结了先前研究中的载体颗粒,发现可以在短时间内(15 至 54 天)增强 AGS 形成。当它们与水力旋流分离器结合进行AGS连续培养时,建议使用大粒径的载体颗粒(GAC、陶粒等),而不是生物炭或氧化石墨纳米颗粒。本研究探讨了水力旋流分离器培养AGS的可行性,有助于实现AGS的连续培养。总结了先前研究中的载体颗粒,发现可以在短时间内(15 至 54 天)增强 AGS 形成。当它们与水力旋流分离器结合进行AGS连续培养时,建议使用大粒径的载体颗粒(GAC、陶粒等),而不是生物炭或氧化石墨纳米颗粒。本研究探讨了水力旋流分离器培养AGS的可行性,有助于实现AGS的连续培养。