当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atomic-Level Insight into the Formation of Subsurface Dislocation Layer and Its Effect on Mechanical Properties During Ultrafast Laser Micro/Nano Fabrication
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-11-23 , DOI: 10.1002/adfm.202108802 Jiawang Xie 1 , Jianfeng Yan 1 , Dezhi Zhu 1 , Guangzhi He 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-11-23 , DOI: 10.1002/adfm.202108802 Jiawang Xie 1 , Jianfeng Yan 1 , Dezhi Zhu 1 , Guangzhi He 1
Affiliation
Micro/nano processing technologies have been extensively studied since micro/nano structures are used in different area such as microelectronics and microdevices. As a high-precision processing technology, ultrafast laser has been applied in the fabrication of different types of metallic micro/nano structures. However, the knowledge about the materials response of metals at atomic scale during laser processing is still necessary to explore. Herein, the femtosecond laser processing of metals from the atomic structure perspective is revealed. Three different layers named recast layer, high density dislocation layer, and unaffected layer are found after femtosecond laser irradiation. The recast layer is on the surface, which is generated from the resolidification of melting materials. The high density dislocation layer, consisting of dislocations and stacking faults, is observed beneath the irradiated surface. The dislocation layer is produced by the laser-induced stress wave, and the mechanical properties of irradiated surface are affected by the laser-induced subsurface dislocation layer. The unaffected layer is not affected by laser irradiation, and maintains the initial atomic structure. The research gives new information about the ultrafast laser processing of metals at atomic-level, which is helpful to the fabrication of functional micro/nano devices for wide applications.
中文翻译:
超快激光微/纳米制造过程中亚表面位错层的形成及其对机械性能的影响的原子级洞察
由于微/纳米结构用于微电子和微器件等不同领域,因此微/纳米加工技术得到了广泛的研究。超快激光作为一种高精度加工技术,已应用于不同类型金属微/纳米结构的制造。然而,关于激光加工过程中金属在原子尺度上的材料响应的知识仍有待探索。本文从原子结构的角度揭示了金属的飞秒激光加工。飞秒激光照射后发现了三个不同的层,称为重铸层、高密度位错层和未受影响层。重铸层在表面,它是由熔化材料的再凝固产生的。高密度位错层,在辐照表面下方观察到由位错和堆垛层错组成。位错层是由激光诱导的应力波产生的,辐照表面的力学性能受激光诱导的亚表面位错层的影响。未受影响的层不受激光照射的影响,并保持初始原子结构。该研究提供了有关原子级金属超快激光加工的新信息,有助于制造具有广泛应用的功能性微/纳米器件。未受影响的层不受激光照射的影响,并保持初始原子结构。该研究提供了有关原子级金属超快激光加工的新信息,有助于制造具有广泛应用的功能性微/纳米器件。未受影响的层不受激光照射的影响,并保持初始原子结构。该研究提供了有关原子级金属超快激光加工的新信息,有助于制造具有广泛应用的功能性微/纳米器件。
更新日期:2021-11-23
中文翻译:
超快激光微/纳米制造过程中亚表面位错层的形成及其对机械性能的影响的原子级洞察
由于微/纳米结构用于微电子和微器件等不同领域,因此微/纳米加工技术得到了广泛的研究。超快激光作为一种高精度加工技术,已应用于不同类型金属微/纳米结构的制造。然而,关于激光加工过程中金属在原子尺度上的材料响应的知识仍有待探索。本文从原子结构的角度揭示了金属的飞秒激光加工。飞秒激光照射后发现了三个不同的层,称为重铸层、高密度位错层和未受影响层。重铸层在表面,它是由熔化材料的再凝固产生的。高密度位错层,在辐照表面下方观察到由位错和堆垛层错组成。位错层是由激光诱导的应力波产生的,辐照表面的力学性能受激光诱导的亚表面位错层的影响。未受影响的层不受激光照射的影响,并保持初始原子结构。该研究提供了有关原子级金属超快激光加工的新信息,有助于制造具有广泛应用的功能性微/纳米器件。未受影响的层不受激光照射的影响,并保持初始原子结构。该研究提供了有关原子级金属超快激光加工的新信息,有助于制造具有广泛应用的功能性微/纳米器件。未受影响的层不受激光照射的影响,并保持初始原子结构。该研究提供了有关原子级金属超快激光加工的新信息,有助于制造具有广泛应用的功能性微/纳米器件。