Nature Catalysis ( IF 42.8 ) Pub Date : 2021-11-18 , DOI: 10.1038/s41929-021-00696-w Athanasios A. Tountas 1 , Mohini M. Sain 1, 2 , Geoffrey A. Ozin 3
The intermittency of renewable electricity requires the deployment of energy-storage technologies as global energy grids become more sustainably sourced. Upcycling carbon dioxide (CO2) and intermittently generated renewable hydrogen to stored products such as methanol (MeOH) allows the cyclic use of carbon and addresses the challenges of storage energy density, size and transportability as well as responsiveness to energy production and demand better than most storage alternatives. Deploying this storage solution efficiently and at scale requires the optimization of production conditions to ensure predictable and maximum long-term process performance. Key to enabling this solution is the generation of highly productive syngas that is rich in carbon monoxide (CO) via reverse water-gas shift (RWGS) or solid-oxide electrolysis cell technologies. The focus herein is the RWGS reaction as it enables a solar-to-fuel efficiency of around 10% that can be deployable at a commercial scale. The need for a higher-efficiency route to renewable MeOH is discussed, and a comparative technoeconomic analysis of two solar-derived MeOH (solar MeOH) strategies is presented: the solar-CO-rich (based on the solar-RWGS process) and the solar-direct-CO2 routes.
中文翻译:
太阳能甲醇储能
随着全球能源网变得更加可持续,可再生电力的间歇性需要部署储能技术。二氧化碳(CO 2) 和间歇性产生的可再生氢存储产品如甲醇 (MeOH) 允许循环使用碳并解决存储能量密度、大小和可运输性以及对能源生产和需求的响应能力比大多数存储替代方案更好的挑战。高效、大规模地部署这种存储解决方案需要优化生产条件,以确保可预测的和最大的长期过程性能。实现该解决方案的关键是通过反向水煤气变换 (RWGS) 或固体氧化物电解槽技术产生富含一氧化碳 (CO) 的高产合成气。本文的重点是 RWGS 反应,因为它可以实现约 10% 的太阳能燃料效率,可以在商业规模上进行部署。2条路线。