当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
2D PEA2PbI4–3D MAPbI3 Composite Perovskite Interfacial Layer for Highly Efficient and Stable Mixed-Ion Perovskite Solar Cells
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-11-19 , DOI: 10.1021/acsaem.1c01848 Hang Zhai 1, 2 , Feiyi Liao 2 , Zhen Song 2 , Bing Ou 2 , Deng Li 2 , Danyan Xie 1 , Hao Sun 2 , Lingbo Xu 1 , Can Cui 1 , Yiying Zhao 2
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-11-19 , DOI: 10.1021/acsaem.1c01848 Hang Zhai 1, 2 , Feiyi Liao 2 , Zhen Song 2 , Bing Ou 2 , Deng Li 2 , Danyan Xie 1 , Hao Sun 2 , Lingbo Xu 1 , Can Cui 1 , Yiying Zhao 2
Affiliation
Progress toward perovskite solar cells (PSCs) with higher efficiency and stability requires further enhancing the light absorption, reducing the carrier recombination at defects and interfaces, improving the charge carrier separation, and minimizing the energy loss crossing the interfaces. Interface passivation and device structure optimization are the main strategies to improve efficiency and device stability. In this work, we report a simple method to combine the two strategies, i.e., realize the pervoskite heterostructure and the passivation layer simultaneously in a single two-dimensional (2D) PEA2PbI4–three-dimensional (3D) MAPbI3 composite perovskite interfacial layer. We use a mixed solution of methylammonium iodide (MAI) and phenethylammonium iodide (PEAI) to react with the intentionally introduced excess PbI2 in the Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3 (CsMAFA) perovskite layer and form the MAPbI3/CsMAFA heterostructure and the 2D PEA2PbI4 perovskite passivation layer. Systematic investigations show that the MAPbI3/CsMAFA heterostructure can enhance the light absorption and the charge carrier separation at the interfaces, and thus improve the short-circuit current (Jsc) of solar cells. The 2D PEA2PbI4 perovskite layer can effectively passivate the interfacial defects and improve the fill factor (FF) and open-circuit voltage (Voc). The working mechanisms of MAI and PEAI treatment are also discussed. This work offers a promising path for the fabrication of highly efficient and stable PSCs.
中文翻译:
用于高效稳定混合离子钙钛矿太阳能电池的 2D PEA2PbI4–3D MAPbI3 复合钙钛矿界面层
向具有更高效率和稳定性的钙钛矿太阳能电池 (PSC) 发展需要进一步增强光吸收,减少缺陷和界面处的载流子复合,改善电荷载流子分离,并最大限度地减少穿过界面的能量损失。界面钝化和器件结构优化是提高效率和器件稳定性的主要策略。在这项工作中,我们报告了一种结合两种策略的简单方法,即在单个二维(2D)PEA 2 PbI 4 –三维(3D)MAPbI 3 中同时实现钙钛矿异质结构和钝化层复合钙钛矿界面层。我们使用甲基碘化铵 (MAI) 和苯乙基碘化铵 (PEAI) 的混合溶液与 Cs 0.05 (MA 0.15 FA 0.85 ) 0.95 Pb(I 0.85 Br 0.15 ) 3 (CskiteFA) 3 (CskiteFA) 中有意引入的过量 PbI 2反应并形成MAPbI 3 /CsMAFA异质结构和二维PEA 2 PbI 4钙钛矿钝化层。系统研究表明,MAPbI 3/CsMAFA异质结构可以增强界面处的光吸收和电荷载流子分离,从而提高太阳能电池的短路电流(J sc)。2D PEA 2 PbI 4钙钛矿层可以有效钝化界面缺陷并提高填充因子(FF)和开路电压(V oc)。还讨论了 MAI 和 PEAI 处理的工作机制。这项工作为制造高效和稳定的 PSC 提供了一条有前途的途径。
更新日期:2021-12-27
中文翻译:
用于高效稳定混合离子钙钛矿太阳能电池的 2D PEA2PbI4–3D MAPbI3 复合钙钛矿界面层
向具有更高效率和稳定性的钙钛矿太阳能电池 (PSC) 发展需要进一步增强光吸收,减少缺陷和界面处的载流子复合,改善电荷载流子分离,并最大限度地减少穿过界面的能量损失。界面钝化和器件结构优化是提高效率和器件稳定性的主要策略。在这项工作中,我们报告了一种结合两种策略的简单方法,即在单个二维(2D)PEA 2 PbI 4 –三维(3D)MAPbI 3 中同时实现钙钛矿异质结构和钝化层复合钙钛矿界面层。我们使用甲基碘化铵 (MAI) 和苯乙基碘化铵 (PEAI) 的混合溶液与 Cs 0.05 (MA 0.15 FA 0.85 ) 0.95 Pb(I 0.85 Br 0.15 ) 3 (CskiteFA) 3 (CskiteFA) 中有意引入的过量 PbI 2反应并形成MAPbI 3 /CsMAFA异质结构和二维PEA 2 PbI 4钙钛矿钝化层。系统研究表明,MAPbI 3/CsMAFA异质结构可以增强界面处的光吸收和电荷载流子分离,从而提高太阳能电池的短路电流(J sc)。2D PEA 2 PbI 4钙钛矿层可以有效钝化界面缺陷并提高填充因子(FF)和开路电压(V oc)。还讨论了 MAI 和 PEAI 处理的工作机制。这项工作为制造高效和稳定的 PSC 提供了一条有前途的途径。