Resources, Conservation and Recycling ( IF 11.2 ) Pub Date : 2021-11-16 , DOI: 10.1016/j.resconrec.2021.106050 Mohammad Balapour , Thiha Thway , Rathin Rao , Newell Moser , Edward J. Garboczi , Y Grace Hsuan , Yaghoob Farnam
A systematic thermodynamics-based framework was applied to recycle waste low and high-calcium coal combustion Fly Ash (FA) into synthetic lightweight aggregates (LWA) through sintering. The process to successfully manufacture synthetic LWA was investigated, which requires a delicate balance among three phenomena: (i) sufficient liquid phase formation during sintering, (ii) appropriate viscosity for the liquid-solid phase, and (iii) sufficient amount of gas emission to form pores in the LWA. Thermodynamics modeling was used to quantify the formation of the liquid phase during sintering while the fluxing agent and the temperature change. The Urbain- Kalmanovitch, Browning, and Krieger-Dougherty models were used to quantify the viscosity of the liquid and liquid-solid phase, respectively. A lower bound of 100 Pa•s for the viscosity was found to ensure spherical shape of the LWA. Using thermogravimetric analysis, it was shown that the LWA had a notable gas release potential, owing to the presence of anhydrite and hematite, which could create gas-filled pores in the LWA macro-microstructure. X-ray computed tomography (X-CT) observation revealed the formation of a porous structure for the produced LWA where high calcium FA LWA generally had larger pores compared with low calcium FA LWA. By correlating the X-CT and scanning electron microscopy (SEM) observations and thermodynamic modeling results, it was found that a minimum of 40% liquid phase content (% by mass) is necessary for the formation of gas-filled pores in FA-LWA.
中文翻译:
一种热力学指导框架,用于设计来自废煤燃烧飞灰的轻质骨料
应用基于系统热力学的框架,通过烧结将废弃的低钙和高钙煤燃烧粉煤灰 (FA) 回收成合成轻骨料 (LWA)。研究了成功制造合成 LWA 的过程,这需要三个现象之间的微妙平衡:(i) 在烧结过程中形成足够的液相,(ii) 适当的液固相粘度,以及 (iii) 足够的气体排放量在 LWA 中形成孔隙。热力学模型用于量化烧结过程中液相的形成,同时助焊剂和温度发生变化。Urbain-Kalmanovitch、Browning 和 Krieger-Dougherty 模型分别用于量化液相和液固相的粘度。发现粘度的下限为 100 Pa•s,以确保 LWA 的球形形状。使用热重分析表明,由于硬石膏和赤铁矿的存在,LWA 具有显着的气体释放潜力,这可能会在 LWA 宏观微观结构中产生充满气体的孔隙。X 射线计算机断层扫描 (X-CT) 观察揭示了所生产 LWA 的多孔结构的形成,其中高钙 FA LWA 与低钙 FA LWA 相比通常具有更大的孔隙。通过将 X-CT 和扫描电子显微镜 (SEM) 观察和热力学建模结果相关联,发现至少 40% 的液相含量(质量百分比)对于 FA-LWA 中充气孔的形成是必要的. 结果表明,由于硬石膏和赤铁矿的存在,LWA 具有显着的气体释放潜力,这可能会在 LWA 宏观微观结构中产生充满气体的孔隙。X 射线计算机断层扫描 (X-CT) 观察揭示了所生产 LWA 的多孔结构的形成,其中高钙 FA LWA 与低钙 FA LWA 相比通常具有更大的孔隙。通过将 X-CT 和扫描电子显微镜 (SEM) 观察和热力学建模结果相关联,发现至少 40% 的液相含量(质量百分比)对于 FA-LWA 中充气孔的形成是必要的. 结果表明,由于硬石膏和赤铁矿的存在,LWA 具有显着的气体释放潜力,这可能会在 LWA 宏观微观结构中产生充满气体的孔隙。X 射线计算机断层扫描 (X-CT) 观察揭示了所生产 LWA 的多孔结构的形成,其中高钙 FA LWA 与低钙 FA LWA 相比通常具有更大的孔隙。通过将 X-CT 和扫描电子显微镜 (SEM) 观察和热力学建模结果相关联,发现至少 40% 的液相含量(质量百分比)对于 FA-LWA 中充气孔的形成是必要的. X 射线计算机断层扫描 (X-CT) 观察揭示了所生产 LWA 的多孔结构的形成,其中高钙 FA LWA 与低钙 FA LWA 相比通常具有更大的孔隙。通过将 X-CT 和扫描电子显微镜 (SEM) 观察和热力学建模结果相关联,发现至少 40% 的液相含量(质量百分比)对于 FA-LWA 中充气孔的形成是必要的. X 射线计算机断层扫描 (X-CT) 观察揭示了所生产 LWA 的多孔结构的形成,其中高钙 FA LWA 与低钙 FA LWA 相比通常具有更大的孔隙。通过将 X-CT 和扫描电子显微镜 (SEM) 观察和热力学建模结果相关联,发现至少 40% 的液相含量(质量百分比)对于 FA-LWA 中充气孔的形成是必要的.