当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Pulsed Field Gradient Nuclear Magnetic Resonance and Diffusion Analysis in Battery Research
Chemistry of Materials ( IF 7.2 ) Pub Date : 2021-11-11 , DOI: 10.1021/acs.chemmater.1c02891 Kee Sung Han 1, 2 , J. David Bazak 1, 2 , Ying Chen 1, 2 , Trent R. Graham 1 , Nancy M. Washton 1 , Jian Zhi Hu 1, 2 , Vijayakumar Murugesan 1, 2 , Karl T. Mueller 1, 2
Chemistry of Materials ( IF 7.2 ) Pub Date : 2021-11-11 , DOI: 10.1021/acs.chemmater.1c02891 Kee Sung Han 1, 2 , J. David Bazak 1, 2 , Ying Chen 1, 2 , Trent R. Graham 1 , Nancy M. Washton 1 , Jian Zhi Hu 1, 2 , Vijayakumar Murugesan 1, 2 , Karl T. Mueller 1, 2
Affiliation
Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) is a widely used method for determining the diffusion coefficient of ions and molecules both in the bulk and when confined (e.g., within porous materials). Due to the nature of diffusion phenomena and the correlation of these processes with the structures of isolated molecules or clusters, studies of diffusion can be used to extract both dynamic and structural information from complex mixtures, including battery electrolytes composed of cations, anions, and solvent molecules. PFG-NMR presents a powerful opportunity for battery scientists to quantify electrolyte properties, such as time scales for dynamics, transference numbers, and solvation structures of active ions that vary due to ion–ion and ion–solvent interactions. These measurements and the derived information about molecular interactions can ultimately be correlated with real battery performance. The purpose of this review is to provide readers with an overview of the basic principles and experimental considerations when undertaking PFG-NMR for battery electrolyte research. In this review, we will first (1) introduce basic PFG-NMR experiments, parameters, and the proper setup for acquiring accurate diffusion coefficients and (2) discuss artifacts that can arise in diffusion measurements, including their diagnosis and suppression. Second, we show the ultimate power of careful analyses of diffusion coefficients for extracting dynamic and structural properties of a wide range of electrolyte types (i.e., dilute, concentrated, polymer, and solid-state) through a review of selected literature. In addition, other NMR methods are briefly introduced, including relaxation measurements and Overhauser dynamic nuclear polarization (ODNP) NMR.
中文翻译:
电池研究中的脉冲场梯度核磁共振和扩散分析
脉冲场梯度核磁共振 (PFG-NMR) 是一种广泛使用的方法,用于确定离子和分子在本体中和受限时(例如,在多孔材料内)的扩散系数。由于扩散现象的性质以及这些过程与孤立分子或簇结构的相关性,扩散研究可用于从复杂混合物中提取动态和结构信息,包括由阳离子、阴离子和溶剂组成的电池电解质分子。PFG-NMR 为电池科学家提供了一个强大的机会来量化电解质特性,例如动力学的时间尺度、迁移数和活性离子的溶剂化结构,这些活性离子因离子-离子和离子-溶剂相互作用而变化。这些测量结果和有关分子相互作用的衍生信息最终可以与实际电池性能相关联。本综述的目的是为读者提供在进行 PFG-NMR 用于电池电解质研究时的基本原理和实验注意事项的概述。在这篇评论中,我们将首先 (1) 介绍基本的 PFG-NMR 实验、参数和获取准确扩散系数的正确设置,以及 (2) 讨论扩散测量中可能出现的伪影,包括它们的诊断和抑制。其次,我们通过对选定文献的回顾,展示了仔细分析扩散系数的终极力量,以提取各种电解质类型(即稀释、浓缩、聚合物和固态)的动态和结构特性。此外,
更新日期:2021-11-23
中文翻译:
电池研究中的脉冲场梯度核磁共振和扩散分析
脉冲场梯度核磁共振 (PFG-NMR) 是一种广泛使用的方法,用于确定离子和分子在本体中和受限时(例如,在多孔材料内)的扩散系数。由于扩散现象的性质以及这些过程与孤立分子或簇结构的相关性,扩散研究可用于从复杂混合物中提取动态和结构信息,包括由阳离子、阴离子和溶剂组成的电池电解质分子。PFG-NMR 为电池科学家提供了一个强大的机会来量化电解质特性,例如动力学的时间尺度、迁移数和活性离子的溶剂化结构,这些活性离子因离子-离子和离子-溶剂相互作用而变化。这些测量结果和有关分子相互作用的衍生信息最终可以与实际电池性能相关联。本综述的目的是为读者提供在进行 PFG-NMR 用于电池电解质研究时的基本原理和实验注意事项的概述。在这篇评论中,我们将首先 (1) 介绍基本的 PFG-NMR 实验、参数和获取准确扩散系数的正确设置,以及 (2) 讨论扩散测量中可能出现的伪影,包括它们的诊断和抑制。其次,我们通过对选定文献的回顾,展示了仔细分析扩散系数的终极力量,以提取各种电解质类型(即稀释、浓缩、聚合物和固态)的动态和结构特性。此外,