当前位置:
X-MOL 学术
›
ACS Appl. Polym. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Extracting Salinity Gradient Energy via Antifouling Poly(acrylic acid-co-acrylamide) Hydrogels in Natural Water
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2021-11-07 , DOI: 10.1021/acsapm.1c01231 Yongzhi Hong 1 , Yunlong Wang 1 , Yuan Tian 1 , Zhihao Wang 1 , Changjiang Hu 1 , Jun Ma 1
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2021-11-07 , DOI: 10.1021/acsapm.1c01231 Yongzhi Hong 1 , Yunlong Wang 1 , Yuan Tian 1 , Zhihao Wang 1 , Changjiang Hu 1 , Jun Ma 1
Affiliation
Salinity gradient energy (SGE) is an increasingly important form of renewable energy occurring in nature when river water streams flow into the sea. Charged polymeric gels have been recently proposed to convert SGE into mechanical energy by utilizing their volumetric response to solution salinity difference. However, most of these materials have drawbacks such as mechanical weakness, manufacturing challenges, and poor durability caused by various kinds of fouling, hampering the new promise of SGE harvest. This study develops a facile, yet versatile radiation cross-linking method to fabricate robust and antifouling poly(acrylic acid-co-acrylamide) hydrogels that can overcome the above-mentioned shortcomings. These cost-effective hydrogels exhibit the superior capacity for the external load due to the hydrogen bonds between the carboxyl and amide groups, and desirable antifouling effect, i.e., high resistance to multivalent cations, bovine serum albumin, and inorganic particles. The hydrogel-based osmotic engine obtains a power density of 1.72 mW/g and energy efficiency (EE) of 2.84%, exceeding the values achieved by existing hydrogels under model 3.5% NaCl–0.035% NaCl cycling solution. Moreover, in a subsequent test to extract SGE in the natural matrix of seawater and river water mixing, we showed for the first time the copolymer hydrogels, unlike common single-charged hydrogels that fail to swell by severe absorption of Ca2+ and Mg2+ ions, enable the multiply cycling and achieve a power density of 1.12 mW/g and EE of 1.17% under optimal ionic density. Therefore, the facileness and versatility of the present radiation method make P(AA-co-AAm) hydrogels suitable for large-scale manufacturing and potential incorporation into SGE harnessing.
中文翻译:
通过防污聚(丙烯酸-共-丙烯酰胺)水凝胶在天然水中提取盐度梯度能
盐度梯度能 (SGE) 是一种越来越重要的可再生能源形式,当河水流入大海时,自然界中就会出现这种可再生能源。最近有人提出带电聚合物凝胶通过利用它们对溶液盐度差异的体积响应将 SGE 转化为机械能。然而,这些材料中的大多数都存在机械弱点、制造挑战和各种污垢导致的耐用性差等缺点,阻碍了 SGE 收获的新前景。本研究中开发的简便,但通用的辐射交联方法来制造稳健和防污聚(丙烯酸-共-丙烯酰胺)水凝胶可以克服上述缺点。由于羧基和酰胺基团之间的氢键,这些具有成本效益的水凝胶表现出优异的外部负载能力,以及理想的防污效果,即对多价阳离子、牛血清白蛋白和无机颗粒的高耐受性。基于水凝胶的渗透引擎获得了 1.72 mW/g 的功率密度和 2.84% 的能量效率 (EE),超过了现有水凝胶在模型 3.5% NaCl–0.035% NaCl 循环溶液下所达到的值。此外,在随后在海水和河水混合的天然基质中提取 SGE 的测试中,我们首次展示了共聚物水凝胶,不像普通的单电荷水凝胶会因 Ca 2+和 Mg 的严重吸收而无法膨胀2+离子,可实现多次循环并在最佳离子密度下实现 1.12 mW/g 的功率密度和 1.17% 的 EE。因此,本辐射方法的简便性和多功能性使 P(AA- co- AAm) 水凝胶适用于大规模制造和潜在纳入 SGE 管理。
更新日期:2021-12-10
中文翻译:
通过防污聚(丙烯酸-共-丙烯酰胺)水凝胶在天然水中提取盐度梯度能
盐度梯度能 (SGE) 是一种越来越重要的可再生能源形式,当河水流入大海时,自然界中就会出现这种可再生能源。最近有人提出带电聚合物凝胶通过利用它们对溶液盐度差异的体积响应将 SGE 转化为机械能。然而,这些材料中的大多数都存在机械弱点、制造挑战和各种污垢导致的耐用性差等缺点,阻碍了 SGE 收获的新前景。本研究中开发的简便,但通用的辐射交联方法来制造稳健和防污聚(丙烯酸-共-丙烯酰胺)水凝胶可以克服上述缺点。由于羧基和酰胺基团之间的氢键,这些具有成本效益的水凝胶表现出优异的外部负载能力,以及理想的防污效果,即对多价阳离子、牛血清白蛋白和无机颗粒的高耐受性。基于水凝胶的渗透引擎获得了 1.72 mW/g 的功率密度和 2.84% 的能量效率 (EE),超过了现有水凝胶在模型 3.5% NaCl–0.035% NaCl 循环溶液下所达到的值。此外,在随后在海水和河水混合的天然基质中提取 SGE 的测试中,我们首次展示了共聚物水凝胶,不像普通的单电荷水凝胶会因 Ca 2+和 Mg 的严重吸收而无法膨胀2+离子,可实现多次循环并在最佳离子密度下实现 1.12 mW/g 的功率密度和 1.17% 的 EE。因此,本辐射方法的简便性和多功能性使 P(AA- co- AAm) 水凝胶适用于大规模制造和潜在纳入 SGE 管理。