Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Constructing Intermediate Energy-Level Perovskite Transition Layer for 15.03% Efficiency HTL-Free Carbon-Based Perovskite Solar Cells with a High Fill Factor of 0.81
Solar RRL ( IF 6.0 ) Pub Date : 2021-11-06 , DOI: 10.1002/solr.202100647 Kexiang Wang 1 , Ran Yin 1 , Weiwei Sun 1 , Xiaonan Huo 1 , Jingwen Liu 1 , Yukun Gao 1 , Tingting You 1 , Penggang Yin 1
Solar RRL ( IF 6.0 ) Pub Date : 2021-11-06 , DOI: 10.1002/solr.202100647 Kexiang Wang 1 , Ran Yin 1 , Weiwei Sun 1 , Xiaonan Huo 1 , Jingwen Liu 1 , Yukun Gao 1 , Tingting You 1 , Penggang Yin 1
Affiliation
Hole transporting layer (HTL)-free, all-inorganic CsPbX3 (X: I, Br, or mixed halides), carbon-based perovskite solar cells (C-PSCs) show promising prospect for photovoltaic application due to their low cost, excellent stability, and theoretical high efficiency. However, the inefficient hole extraction of the carbon electrode and relatively narrow light absorption range of inorganic perovskite limit the power conversion efficiency (PCE) of this kind of PSCs. Herein, these issues are addressed through in situ constructing of an intermediate energy-level perovskite transition layer between CsPbI2.2Br0.8 and the carbon electrode via a facile formamidinium iodide (FAI) posttreatment strategy. It is demonstrated that the (CsFA)PbI3–xBrx film is in situ formed atop inorganic perovskite due to the ions exchange between FAI and CsPbI2.2Br0.8, which can not only broaden the light absorption edge of CsPbI2.2Br0.8 from 657 to 680 nm, but also serve as a hole transfer highway between CsPbI2.2Br0.8 and the carbon electrode, mainly due to its suitable intermediate energy-level and effective defect passivation. Consequently, the optimized HTL-free C-PSC achieves a champion PCE of 15.03% with an ultrahigh fill factor of 0.81. Besides, the stability of CsPbI2.2Br0.8 film (especially under humid environment) and corresponding C-PSC are also improved.
中文翻译:
原位构建中间能级钙钛矿过渡层,用于 15.03% 效率的无 HTL 碳基钙钛矿太阳能电池,具有 0.81 的高填充因子
无空穴传输层 (HTL)、全无机 CsPbX 3 (X: I、Br 或混合卤化物)、碳基钙钛矿太阳能电池 (C-PSC) 因其低成本、优异的性能而在光伏应用中显示出广阔的前景。稳定性和理论上的高效率。然而,碳电极的低效空穴提取和无机钙钛矿相对较窄的光吸收范围限制了这种PSC的功率转换效率(PCE)。在此,通过简便的碘化甲脒 (FAI) 后处理策略在 CsPbI 2.2 Br 0.8和碳电极之间原位构建中间能级钙钛矿过渡层来解决这些问题。证明 (CsFA)PbI 3– x由于FAI与CsPbI 2.2 Br 0.8之间的离子交换,Br x薄膜在无机钙钛矿上原位形成,不仅可以将CsPbI 2.2 Br 0.8的光吸收边缘从657 nm拓宽到680 nm,还可以作为空穴转移CsPbI 2.2 Br 0.8和碳电极之间的高速公路,主要是由于其合适的中间能级和有效的缺陷钝化。因此,优化的无 HTL C-PSC 以 0.81 的超高填充因子实现了 15.03% 的冠军 PCE。此外,CsPbI 2.2 Br 0.8的稳定性 薄膜(特别是在潮湿环境下)和相应的C-PSC也得到了改善。
更新日期:2022-01-08
中文翻译:
原位构建中间能级钙钛矿过渡层,用于 15.03% 效率的无 HTL 碳基钙钛矿太阳能电池,具有 0.81 的高填充因子
无空穴传输层 (HTL)、全无机 CsPbX 3 (X: I、Br 或混合卤化物)、碳基钙钛矿太阳能电池 (C-PSC) 因其低成本、优异的性能而在光伏应用中显示出广阔的前景。稳定性和理论上的高效率。然而,碳电极的低效空穴提取和无机钙钛矿相对较窄的光吸收范围限制了这种PSC的功率转换效率(PCE)。在此,通过简便的碘化甲脒 (FAI) 后处理策略在 CsPbI 2.2 Br 0.8和碳电极之间原位构建中间能级钙钛矿过渡层来解决这些问题。证明 (CsFA)PbI 3– x由于FAI与CsPbI 2.2 Br 0.8之间的离子交换,Br x薄膜在无机钙钛矿上原位形成,不仅可以将CsPbI 2.2 Br 0.8的光吸收边缘从657 nm拓宽到680 nm,还可以作为空穴转移CsPbI 2.2 Br 0.8和碳电极之间的高速公路,主要是由于其合适的中间能级和有效的缺陷钝化。因此,优化的无 HTL C-PSC 以 0.81 的超高填充因子实现了 15.03% 的冠军 PCE。此外,CsPbI 2.2 Br 0.8的稳定性 薄膜(特别是在潮湿环境下)和相应的C-PSC也得到了改善。