Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Silane-Functionalized Carbon Dots and Their Polymerized Hybrids: From Optoelectronics to Biotherapy
Small ( IF 13.0 ) Pub Date : 2021-11-06 , DOI: 10.1002/smll.202105273 Xuezhe Dong 1, 2 , Yunfeng Wang 1, 3 , Ruifang Guan 2 , Junkai Ren 1 , Zheng Xie 1
Small ( IF 13.0 ) Pub Date : 2021-11-06 , DOI: 10.1002/smll.202105273 Xuezhe Dong 1, 2 , Yunfeng Wang 1, 3 , Ruifang Guan 2 , Junkai Ren 1 , Zheng Xie 1
Affiliation
Nanomaterials usually manifest unique properties in solutions but will be undermined in the solid state. It is necessary to incorporate them into substrates or hybrid them with other functional materials for multiple devices and applications. Though there are a variety of methods to inherit their intrinsic properties like fluorescent and mechanical performance, most nanohybrid materials would lose their transparency irreversibly when construct solid-state devices. As a hot topic of nanomaterials in recent years, scientific works found a type of carbon dots using silane coupling agents as precursors that can overcome the shortcoming. These carbon dots, called silane-functionalized carbon dots (SiCDs), are catching increasing interest due to their versatility. Silane coupling agents endow SiCDs with the ability to disperse in solvents or polymerize with matrices by blending or covalent bonds without loss of transparency and decline of performance. The distinguishing features make SiCDs an ideal high transmittance, high doping concentration nanomaterial. The synergistic effect of SiCDs and hybridized sol–gel solid structures can not only hold the optical features of CDs but also enhance their original physical and chemical performance. This highlight focuses on the connection between SiCDs and organosilanes. Plus, preparation methods, applications, and prospective of SiCDs are mentioned.
中文翻译:
硅烷功能化碳点及其聚合杂化物:从光电到生物治疗
纳米材料通常在溶液中表现出独特的特性,但在固态中会受到破坏。有必要将它们结合到基板中或将它们与其他功能材料混合用于多种设备和应用。尽管有多种方法可以继承其固有特性,如荧光和机械性能,但大多数纳米杂化材料在构建固态器件时会不可逆转地失去其透明度。作为近年来纳米材料的热门话题,科学工作发现了一种以硅烷偶联剂为前驱体的碳点,可以克服这一缺点。这些被称为硅烷功能化碳点 (SiCD) 的碳点因其多功能性而受到越来越多的关注。硅烷偶联剂赋予碳化硅通过混合或共价键分散在溶剂中或与基质聚合的能力,而不会损失透明度和性能下降。显着特征使SiCD成为理想的高透射率、高掺杂浓度的纳米材料。SiCDs和杂化溶胶-凝胶固体结构的协同效应不仅可以保持CDs的光学特性,而且可以增强其原有的物理和化学性能。本次重点介绍了碳化硅与有机硅烷之间的联系。此外,还提到了碳化硅的制备方法、应用和前景。SiCDs和杂化溶胶-凝胶固体结构的协同效应不仅可以保持CDs的光学特性,而且可以增强其原有的物理和化学性能。本次重点介绍了碳化硅与有机硅烷之间的联系。此外,还提到了碳化硅的制备方法、应用和前景。SiCDs和杂化溶胶-凝胶固体结构的协同效应不仅可以保持CDs的光学特性,而且可以增强其原有的物理和化学性能。本次重点介绍了碳化硅与有机硅烷之间的联系。此外,还提到了碳化硅的制备方法、应用和前景。
更新日期:2021-12-16
中文翻译:
硅烷功能化碳点及其聚合杂化物:从光电到生物治疗
纳米材料通常在溶液中表现出独特的特性,但在固态中会受到破坏。有必要将它们结合到基板中或将它们与其他功能材料混合用于多种设备和应用。尽管有多种方法可以继承其固有特性,如荧光和机械性能,但大多数纳米杂化材料在构建固态器件时会不可逆转地失去其透明度。作为近年来纳米材料的热门话题,科学工作发现了一种以硅烷偶联剂为前驱体的碳点,可以克服这一缺点。这些被称为硅烷功能化碳点 (SiCD) 的碳点因其多功能性而受到越来越多的关注。硅烷偶联剂赋予碳化硅通过混合或共价键分散在溶剂中或与基质聚合的能力,而不会损失透明度和性能下降。显着特征使SiCD成为理想的高透射率、高掺杂浓度的纳米材料。SiCDs和杂化溶胶-凝胶固体结构的协同效应不仅可以保持CDs的光学特性,而且可以增强其原有的物理和化学性能。本次重点介绍了碳化硅与有机硅烷之间的联系。此外,还提到了碳化硅的制备方法、应用和前景。SiCDs和杂化溶胶-凝胶固体结构的协同效应不仅可以保持CDs的光学特性,而且可以增强其原有的物理和化学性能。本次重点介绍了碳化硅与有机硅烷之间的联系。此外,还提到了碳化硅的制备方法、应用和前景。SiCDs和杂化溶胶-凝胶固体结构的协同效应不仅可以保持CDs的光学特性,而且可以增强其原有的物理和化学性能。本次重点介绍了碳化硅与有机硅烷之间的联系。此外,还提到了碳化硅的制备方法、应用和前景。