当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Novel Nanostructured WO3@Prussian Blue Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-11-03 , DOI: 10.1021/acsaem.1c02317 Heng Wu 1, 2 , Qi Liu 1 , Li Zhang 3 , YaWen Tang 1 , Gang Wang 1 , GuoBing Mao 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-11-03 , DOI: 10.1021/acsaem.1c02317 Heng Wu 1, 2 , Qi Liu 1 , Li Zhang 3 , YaWen Tang 1 , Gang Wang 1 , GuoBing Mao 1
Affiliation
A simple hydrothermal method has been developed to prepare a WO3 nanorod array@Prussian blue (WO3@PB) composite material on FTO substrates with core–shell heterogeneous structures, aiming to enhance the limited photoelectrochemical performance of semiconductor nanomaterials. Due to their enhanced absorption efficiency, faster electron transfer rate, and more appropriate gradient energy gap structure, the obtained composite materials display higher photocurrent density in comparison with pure WO3. A photocurrent density of 0.34 mA/cm2 at 1.23 V vs RHE was finally obtained over a WO3@PB photoanode with an electrochemical deposition time of 150 s, which is 0.8 and 33 times higher than those of pure WO3 and PB, respectively. Our work offers a promising photoelectrocatalyst for water decomposition applications and provides a way for the synthesis of environmentally friendly and low-cost photoanode materials.
中文翻译:
用于高效光电化学水分解的新型纳米结构 WO3@普鲁士蓝异质结光阳极
已经开发出一种简单的水热方法在具有核壳异质结构的 FTO 衬底上制备 WO 3纳米棒阵列@普鲁士蓝(WO 3 @PB)复合材料,旨在提高半导体纳米材料有限的光电化学性能。由于其增强的吸收效率、更快的电子转移速率和更合适的梯度能隙结构,所获得的复合材料与纯WO 3相比显示出更高的光电流密度。在 WO 3 @PB 光阳极上最终获得了0.34 mA/cm 2在 1.23 V vs RHE 下的光电流密度,电化学沉积时间为 150 s,是纯 WO 的 0.8 和 33 倍分别为3和 PB。我们的工作为水分解应用提供了一种有前途的光电催化剂,并为合成环保和低成本的光阳极材料提供了一种方法。
更新日期:2021-11-22
中文翻译:
用于高效光电化学水分解的新型纳米结构 WO3@普鲁士蓝异质结光阳极
已经开发出一种简单的水热方法在具有核壳异质结构的 FTO 衬底上制备 WO 3纳米棒阵列@普鲁士蓝(WO 3 @PB)复合材料,旨在提高半导体纳米材料有限的光电化学性能。由于其增强的吸收效率、更快的电子转移速率和更合适的梯度能隙结构,所获得的复合材料与纯WO 3相比显示出更高的光电流密度。在 WO 3 @PB 光阳极上最终获得了0.34 mA/cm 2在 1.23 V vs RHE 下的光电流密度,电化学沉积时间为 150 s,是纯 WO 的 0.8 和 33 倍分别为3和 PB。我们的工作为水分解应用提供了一种有前途的光电催化剂,并为合成环保和低成本的光阳极材料提供了一种方法。