当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-11-02 , DOI: 10.1021/jacs.1c08581 Yuanjun Chen 1 , Peixia Wang 2, 3 , Haigang Hao 4 , Juanji Hong 5 , Haijing Li 6 , Shufang Ji 1 , Ang Li 7 , Rui Gao 4 , Juncai Dong 6 , Xiaodong Han 7 , Minmin Liang 5 , Dingsheng Wang 1 , Yadong Li 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-11-02 , DOI: 10.1021/jacs.1c08581 Yuanjun Chen 1 , Peixia Wang 2, 3 , Haigang Hao 4 , Juanji Hong 5 , Haijing Li 6 , Shufang Ji 1 , Ang Li 7 , Rui Gao 4 , Juncai Dong 6 , Xiaodong Han 7 , Minmin Liang 5 , Dingsheng Wang 1 , Yadong Li 1
Affiliation
Although great progress has been made in artificial enzyme engineering, their catalytic performance is far from satisfactory as alternatives of natural enzymes. Here, we report a novel and efficient strategy to access high-performance nanozymes via direct atomization of platinum nanoparticles (Pt NPs) into single atoms by reversing the thermal sintering process. Atomization of Pt NPs into single atoms makes metal catalytic sites fully exposed and results in engineerable structural and electronic properties, thereby leading to dramatically enhanced enzymatic performance. As expected, the as-prepared thermally stable Pt single-atom nanozyme (PtTS-SAzyme) exhibited remarkable peroxidase-like catalytic activity and kinetics, far exceeding the Pt nanoparticle nanozyme. The following density functional theory calculations revealed that the engineered P and S atoms not only promote the atomization process from Pt NPs into PtTS-SAzyme but also endow single-atom Pt catalytic sites with a unique electronic structure owing to the electron donation of P atoms, as well as the electron acceptance of N and S atoms, which simultaneously contribute to the substantial enhancement of the enzyme-like catalytic performance of PtTS-SAzyme. This work demonstrates that thermal atomization of the metal nanoparticle-based nanozymes into single-atom nanozymes is an effective strategy for engineering high-performance nanozymes, which opens up a new way to rationally design and optimize artificial enzymes to mimic natural enzymes.
中文翻译:
铂纳米粒子热雾化成单个原子:一种设计高性能纳米酶的有效策略
尽管人工酶工程取得了很大进展,但其催化性能作为天然酶的替代品还远远不能令人满意。在这里,我们报告了一种新颖而有效的策略,通过逆转热烧结过程将铂纳米粒子 (Pt NPs) 直接雾化成单个原子来获得高性能纳米酶。将 Pt NPs 原子化成单个原子使金属催化位点完全暴露,并产生可工程化的结构和电子特性,从而显着提高酶促性能。正如所料,所制备的热稳定 Pt 单原子纳米酶 (Pt TS-SAzyme) 表现出显着的类过氧化物酶催化活性和动力学,远远超过 Pt 纳米颗粒纳米酶。以下密度泛函理论计算表明,工程化的 P 和 S 原子不仅促进了 Pt NPs 到 Pt TS -SAzyme 的原子化过程,而且由于 P 原子的电子供体赋予单原子 Pt 催化位点独特的电子结构,以及 N 和 S 原子的电子接受,同时有助于显着增强 Pt TS的酶样催化性能-SA酶。这项工作表明,将金属纳米颗粒基纳米酶热雾化成单原子纳米酶是一种设计高性能纳米酶的有效策略,为合理设计和优化人工酶以模拟天然酶开辟了一条新途径。
更新日期:2021-11-10
中文翻译:
铂纳米粒子热雾化成单个原子:一种设计高性能纳米酶的有效策略
尽管人工酶工程取得了很大进展,但其催化性能作为天然酶的替代品还远远不能令人满意。在这里,我们报告了一种新颖而有效的策略,通过逆转热烧结过程将铂纳米粒子 (Pt NPs) 直接雾化成单个原子来获得高性能纳米酶。将 Pt NPs 原子化成单个原子使金属催化位点完全暴露,并产生可工程化的结构和电子特性,从而显着提高酶促性能。正如所料,所制备的热稳定 Pt 单原子纳米酶 (Pt TS-SAzyme) 表现出显着的类过氧化物酶催化活性和动力学,远远超过 Pt 纳米颗粒纳米酶。以下密度泛函理论计算表明,工程化的 P 和 S 原子不仅促进了 Pt NPs 到 Pt TS -SAzyme 的原子化过程,而且由于 P 原子的电子供体赋予单原子 Pt 催化位点独特的电子结构,以及 N 和 S 原子的电子接受,同时有助于显着增强 Pt TS的酶样催化性能-SA酶。这项工作表明,将金属纳米颗粒基纳米酶热雾化成单原子纳米酶是一种设计高性能纳米酶的有效策略,为合理设计和优化人工酶以模拟天然酶开辟了一条新途径。