Journal of Materials Science ( IF 3.5 ) Pub Date : 2021-09-18 , DOI: 10.1007/s10853-021-06516-7 Riyadh Ramadhan Ikreedeegh 1, 2 , Muhammad Tahir 1, 3
Well-designed titania nanotubes (TNTs) arrays with hierarchical structure were anchored with graphitic carbon nitride (g-C3N4) and reduced graphene oxide (RGO) to construct ternary 2D/2D/1D g-C3N4-RGO-TNTs heterojunction for stimulating photocatalytic CO2 reduction. Controlled architecture of TNTs with outstanding length was obtained, providing excellent performance of electron transporting with proficient sorption process. Using optimized g-C3N4-RGO-TNTs composite, the highest CH4 and CO production of 3322.1 and 47,117.4 μmole m−2, respectively, was achieved after 4 h irradiation, which represent a significant improvement in the production of both the products compared to pristine TNTs. This enhancement is mainly attributed to interface charge transfer with their efficient separation within the ternary heterojunction due to RGO sandwich which acted as a solid electron mediator to suppress the charge recombination rate of charges in both the semiconductors with the synergistic effect of anatase/rutile phases. The ternary composite also exhibited the best quantum yield for CH4 and CO. By increasing pressure, the productivity was further increased due to the enhanced mass transfer. Furthermore, the stability analysis has shown good performance and durability of the composite in multiple cycles without any obvious decline. The newly developed structured composite with controlled growth of TNTs anchored with g–C3N4 and RGO would be a promising approach for other solar energy applications.
Graphical abstract
中文翻译:
在二氧化钛纳米管阵列 (TNTA) 上使用 g-C3N4/RGO 将 CO2 光催化还原为 CO 和 CH4
精心设计的具有分层结构的二氧化钛纳米管 (TNTs) 阵列与石墨氮化碳 (gC 3 N 4 ) 和还原氧化石墨烯 (RGO)锚定,以构建三元 2D/2D/1D gC 3 N 4 -RGO-TNTs 异质结,用于刺激光催化CO 2还原。获得了具有出色长度的可控结构的 TNT,提供了出色的电子传输性能和熟练的吸附过程。使用优化的 gC 3 N 4 -RGO-TNTs 复合材料,最高的 CH 4和 CO 产量为 3322.1 和 47,117.4 μmole m -2分别在 4 小时辐照后实现,这表明与原始 TNT 相比,这两种产品的产量都有显着提高。这种增强主要归因于界面电荷转移及其在三元异质结内的有效分离,这是由于 RGO 夹心充当固体电子介体,在锐钛矿/金红石相的协同作用下抑制两种半导体中电荷的电荷复合率。三元复合物也表现出最佳的 CH 4量子产率和 CO。通过增加压力,由于传质增强,生产率进一步提高。此外,稳定性分析表明复合材料在多次循环中具有良好的性能和耐久性,没有任何明显的下降。新开发的结构化复合材料具有控制生长的 TNTs 锚定 g-C 3 N 4和 RGO 将是其他太阳能应用的有前途的方法。