Sports Medicine ( IF 9.3 ) Pub Date : 2021-10-30 , DOI: 10.1007/s40279-021-01558-y David S Rowlands 1 , Brigitte Hani Kopetschny 1 , Claire E Badenhorst 1
Background
Body-fluid loss during prolonged continuous exercise can impair cardiovascular function, harming performance. Delta percent plasma volume (dPV) represents the change in central and circulatory body-water volume and therefore hydration during exercise; however, the effect of carbohydrate–electrolyte drinks and water on the dPV response is unclear.
Objective
To determine by meta-analysis the effects of ingested hypertonic (> 300 mOsmol kg−1), isotonic (275–300 mOsmol kg−1) and hypotonic (< 275 mOsmol kg−1) drinks containing carbohydrate and electrolyte ([Na+] < 50 mmol L−1), and non-carbohydrate drinks/water (< 40 mOsmol kg−1) on dPV during continuous exercise.
Methods
A systematic review produced 28 qualifying studies and 68 drink treatment effects. Random-effects meta-analyses with repeated measures provided estimates of effects and probability of superiority (p+) during 0–180 min of exercise, adjusted for drink osmolality, ingestion rate, metabolic rate and a weakly informative Bayesian prior.
Results
Mean drink effects on dPV were: hypertonic − 7.4% [90% compatibility limits (CL) − 8.5, − 6.3], isotonic − 8.7% (90% CL − 10.1, − 7.4), hypotonic − 6.3% (90% CL − 7.4, − 5.3) and water − 7.5% (90% CL − 8.5, − 6.4). Posterior contrast estimates relative to the smallest important effect (dPV = 0.75%) were: hypertonic-isotonic 1.2% (90% CL − 0.1, 2.6; p+ = 0.74), hypotonic-isotonic 2.3% (90% CL 1.1, 3.5; p+ = 0.984), water-isotonic 1.3% (90% CL 0.0, 2.5; p+ = 0.76), hypotonic-hypertonic 1.1% (90% CL 0.1, 2.1; p+ = 0.71), hypertonic-water 0.1% (90% CL − 0.8, 1.0; p+ = 0.12) and hypotonic-water 1.1% (90% CL 0.1, 2.0; p+ = 0.72). Thus, hypotonic drinks were very likely superior to isotonic and likely superior to hypertonic and water. Metabolic rate, ingestion rate, carbohydrate characteristics and electrolyte concentration were generally substantial modifiers of dPV.
Conclusion
Hypotonic carbohydrate–electrolyte drinks ingested continuously during exercise provide the greatest benefit to hydration.
Graphical abstract
中文翻译:
持续运动期间高渗、等渗和低渗运动饮料和水对中枢水合作用的补水作用:系统的荟萃分析和展望
背景
长时间连续运动期间体液流失会损害心血管功能,损害运动表现。Delta 血浆体积百分比 ( d PV) 代表运动过程中中枢和循环体水体积的变化,因此水合作用;然而,碳水化合物-电解质饮料和水对d PV 反应的影响尚不清楚。
客观的
通过荟萃分析确定摄入的高渗 (> 300 mOsmol kg -1 )、等渗 (275–300 mOsmol kg -1 ) 和低渗 (< 275 mOsmol kg -1 ) 含碳水化合物和电解质 ([Na + ] < 50 mmol L -1 ) 和非碳水化合物饮料/水 (< 40 mOsmol kg -1 )在连续运动期间对d PV 的影响。
方法
一项系统评价产生了 28 项合格研究和 68 项饮料治疗效果。具有重复测量的随机效应荟萃分析提供了对 0-180 分钟运动期间的效应和优势概率 ( p + ) 的估计,并根据饮料渗透压、摄入率、代谢率和信息量较弱的贝叶斯先验进行了调整。
结果
平均饮酒对d PV 的影响为:高渗 - 7.4% [90% 相容性极限 (CL) - 8.5, - 6.3],等渗 - 8.7% (90% CL - 10.1, - 7.4),低渗 - 6.3% (90% CL - 7.4, - 5.3) 和水 - 7.5% (90% CL - 8.5, - 6.4)。相对于最小重要效应 ( d PV = 0.75%) 的后部对比估计为:高渗 - 等渗 1.2% (90% CL - 0.1, 2.6; p + = 0.74),低渗 - 等渗 2.3% (90% CL 1.1, 3.5 ; p + = 0.984), 等渗水 1.3% (90% CL 0.0, 2.5; p + = 0.76), 低渗-高渗 1.1% (90% CL 0.1, 2.1; p + = 0.71), 高渗水 0.1% (90% CL - 0.8, 1.0; p + = 0.12) 和低渗水 1.1% (90% CL 0.1, 2.0; p + = 0.72)。因此,低渗饮料很可能优于等渗饮料,也可能优于高渗饮料和水。代谢率、摄入率、碳水化合物特征和电解质浓度通常是d PV 的重要调节剂。
结论
运动期间持续摄入的低渗碳水化合物电解质饮料对补水作用最大。