当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural Characterization of Human Histone H4.1 by Tandem Nonlinear and Linear Ion Mobility Spectrometry Complemented with Molecular Dynamics Simulations
ACS Omega ( IF 3.7 ) Pub Date : 2021-10-27 , DOI: 10.1021/acsomega.1c03744
Khoa N Pham 1 , Francisco Fernandez-Lima 1, 2
Affiliation  

Extracellular histone H4 is an attractive drug target owing to its roles in organ failure in sepsis and other diseases. To identify inhibitors using in silico methods, information on histone H4 structural dynamics and three-dimensional (3D) structural coordinates is required. Here, DNA-free histone H4 type 1 (H4.1) was characterized by utilizing tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry (MS) complemented with molecular dynamics (MD) simulations. The gas-phase structures of H4.1 are dependent on the starting solution conditions, evidenced by differences in charge state distributions, mobility distributions, and collision-induced unfolding (CIU) pathways. The experimental results show that H4.1 adopts diverse conformational types from compact (C) to partially folded (P) and subsequently elongated (E) structures. Molecular dynamics simulations provided candidate structures for the histone H4.1 monomer in solution and for the gas-phase structures observed using FAIMS-IMS-TOF MS as a function of the charge state and mobility distribution. A combination of the FAIMS-TIMS experimental results with theoretical dipole calculations reveals the important role of charge distribution in the dipole alignment of H4.1 elongated structures at high electric fields. A comparison of the secondary and primary structures of DNA-free H2A.1 and H4.1 is made based on the experimental IMS-MS and MD findings.

中文翻译:

用串联非线性和线性离子淌度光谱法对人组蛋白 H4.1 进行结构表征,并辅以分子动力学模拟

细胞外组蛋白 H4 因其在脓毒症和其他疾病的器官衰竭中的作用而成为一种有吸引力的药物靶标。为了使用计算机方法识别抑制剂,需要有关组蛋白 H4 结构动力学和三维 (3D) 结构坐标的信息。在这里,无 DNA 组蛋白 H4 类型 1 (H4.1) 的特点是利用串联非线性和线性离子迁移谱 (FAIMS-TIMS) 耦合质谱 (MS) 补充分子动力学 (MD) 模拟。H4.1 的气相结构取决于起始溶液条件,电荷态分布、迁移率分布和碰撞诱导展开 (CIU) 路径的差异证明了这一点。实验结果表明,H4. 图 1 采用多种构象类型,从紧凑 (C) 到部分折叠 (P) 和随后拉长 (E) 结构。分子动力学模拟为溶液中的组蛋白 H4.1 单体和使用 FAIMS-IMS-TOF MS 观察到的作为电荷状态和迁移率分布的函数的气相结构提供了候选结构。FAIMS-TIMS 实验结果与理论偶极子计算相结合,揭示了电荷分布在高电场下 H4.1 细长结构的偶极子排列中的重要作用。基于实验 IMS-MS 和 MD 发现,比较了无 DNA 的 H2A.1 和 H4.1 的二级和一级结构。1 溶液中的单体和使用 FAIMS-IMS-TOF MS 观察到的气相结构作为电荷状态和迁移率分布的函数。FAIMS-TIMS 实验结果与理论偶极子计算相结合,揭示了电荷分布在高电场下 H4.1 细长结构的偶极子排列中的重要作用。基于实验 IMS-MS 和 MD 发现,比较了无 DNA 的 H2A.1 和 H4.1 的二级和一级结构。1 溶液中的单体和使用 FAIMS-IMS-TOF MS 观察到的气相结构作为电荷状态和迁移率分布的函数。FAIMS-TIMS 实验结果与理论偶极子计算相结合,揭示了电荷分布在高电场下 H4.1 细长结构的偶极子排列中的重要作用。基于实验 IMS-MS 和 MD 发现,比较了无 DNA 的 H2A.1 和 H4.1 的二级和一级结构。
更新日期:2021-11-09
down
wechat
bug