Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enzymatic Hydrolysis of Triglycerides at the Water–Oil Interface Studied via Interfacial Rheology Analysis of Lipase Adsorption Layers
Langmuir ( IF 3.7 ) Pub Date : 2021-10-26 , DOI: 10.1021/acs.langmuir.1c01963 Aliyar Javadi 1, 2, 3, 4 , Saeid Dowlati 1, 2 , Sara Shourni 2 , Sherly Rusli 1 , Kerstin Eckert 3, 4 , Reinhard Miller 5 , Matthias Kraume 1
Langmuir ( IF 3.7 ) Pub Date : 2021-10-26 , DOI: 10.1021/acs.langmuir.1c01963 Aliyar Javadi 1, 2, 3, 4 , Saeid Dowlati 1, 2 , Sara Shourni 2 , Sherly Rusli 1 , Kerstin Eckert 3, 4 , Reinhard Miller 5 , Matthias Kraume 1
Affiliation
The enzymatic hydrolysis of sunflower oil occurs at the water–oil interface. Therefore, the characterization of dynamic interfacial phenomena is essential for understanding the related mechanisms for process optimizations. Most of the available studies for this purpose deal with averaged interfacial properties determined via reaction kinetics and dynamic surface tension measurements. In addition to the classical approach for dynamic surface tension measurements, here, the evolution of the dilational viscoelasticity of the lipase adsorbed layer at the water–oil interface is characterized using profile analysis tensiometry. It is observed that lipase exhibits nonlinear dilational rheology depending on the concentration and age of the adsorbed layer. For reactive water–oil interfaces, the response of the interfacial tension to the sinusoidal area perturbations becomes more asymmetric with time. Surface-active products of the enzymatic hydrolysis of triglycerides render the interface less elastic during compression compared to the expansion path. The lipolysis products can facilitate desorption upon compression while inhibiting adsorption upon expansion of the interface. Lissajous plots provide an insight into how the hysteresis effect leads to different interfacial tensions along the expansion and compression routes. Also, the droplet shape increasingly deviates from a Laplacian shape, demonstrating an irreversible film formation during aging and ongoing hydrolysis reaction, which supports our findings via interfacial elasticity analysis.
中文翻译:
通过脂肪酶吸附层的界面流变学分析研究水-油界面甘油三酯的酶解
葵花籽油的酶水解发生在水-油界面。因此,动态界面现象的表征对于理解工艺优化的相关机制至关重要。大多数用于此目的的可用研究涉及通过反应动力学和动态表面张力测量确定的平均界面性质。除了动态表面张力测量的经典方法外,这里还使用轮廓分析张力测定法表征了水-油界面处脂肪酶吸附层的膨胀粘弹性的演变。据观察,脂肪酶表现出非线性膨胀流变性,这取决于吸附层的浓度和年龄。对于反应性水-油界面,界面张力对正弦区域扰动的响应随时间变得更加不对称。与膨胀路径相比,甘油三酯酶促水解的表面活性产物使界面在压缩过程中的弹性更小。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。与膨胀路径相比,甘油三酯酶促水解的表面活性产物使界面在压缩过程中的弹性更小。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。与膨胀路径相比,甘油三酯酶促水解的表面活性产物使界面在压缩过程中的弹性更小。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。
更新日期:2021-11-09
中文翻译:
通过脂肪酶吸附层的界面流变学分析研究水-油界面甘油三酯的酶解
葵花籽油的酶水解发生在水-油界面。因此,动态界面现象的表征对于理解工艺优化的相关机制至关重要。大多数用于此目的的可用研究涉及通过反应动力学和动态表面张力测量确定的平均界面性质。除了动态表面张力测量的经典方法外,这里还使用轮廓分析张力测定法表征了水-油界面处脂肪酶吸附层的膨胀粘弹性的演变。据观察,脂肪酶表现出非线性膨胀流变性,这取决于吸附层的浓度和年龄。对于反应性水-油界面,界面张力对正弦区域扰动的响应随时间变得更加不对称。与膨胀路径相比,甘油三酯酶促水解的表面活性产物使界面在压缩过程中的弹性更小。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。与膨胀路径相比,甘油三酯酶促水解的表面活性产物使界面在压缩过程中的弹性更小。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。与膨胀路径相比,甘油三酯酶促水解的表面活性产物使界面在压缩过程中的弹性更小。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。脂解产物可以在压缩时促进解吸,同时在界面膨胀时抑制吸附。Lissajous 图提供了关于滞后效应如何导致沿膨胀和压缩路径的不同界面张力的见解。此外,液滴形状越来越偏离拉普拉斯形状,表明在老化和正在进行的水解反应期间形成不可逆的膜,这支持了我们通过界面弹性分析的发现。