当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic Structure Theory Calculations Using Modern Architectures: KNL vs Haswell
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2021-10-26 , DOI: 10.1021/acs.jctc.1c00705
Taylor Harville 1 , Mark S Gordon 1
Affiliation  

The time to solution and parallel efficiency of several commonly used electronic structure methods (Hartree–Fock, density functional theory, second order perturbation theory, resolution of the identity second order perturbation theory, coupled cluster) are evaluated on both the Intel Xeon Haswell and the Intel Xeon Phi Knights Landing (KNL) architectures. The Haswell completes the benchmark calculations with a faster time to solution than the KNL for all molecules and methods tested. While the Haswell exhibits an average speedup of at least 3.5 relative to the KNL for all nonthreaded computations, the KNL has a better parallel efficiency than the Haswell with increasing core counts. The architectures are further tested using a more computationally costly coupled cluster method on a transition state reaction. The Haswell appears to be the best choice to minimize the time to solution, though for very large systems and high levels of theory that require memory intensive processes the superior memory hierarchy and larger on node memory of the KNL can make it a better choice. These results are used to showcase aspects of novel architectures that will increase efficiency for quantum chemistry applications.

中文翻译:

使用现代架构进行电子结构理论计算:KNL 与 Haswell

在 Intel Xeon Haswell 和英特尔至强融核骑士登陆 (KNL) 架构。对于所有测试的分子和方法,Haswell 以比 KNL 更快的时间完成基准计算。虽然对于所有非线程计算,Haswell 相对于 KNL 表现出至少 3.5 的平均加速比,但随着内核数量的增加,KNL 具有比 Haswell 更好的并行效率。在过渡态反应上使用计算成本更高的耦合集群方法进一步测试架构。Haswell 似乎是最小化求解时间的最佳选择,尽管对于需要内存密集型进程的非常大的系统和高水平的理论,KNL 的高级内存层次结构和更大的节点内存可以使其成为更好的选择。这些结果用于展示将提高量子化学应用效率的新型架构的各个方面。
更新日期:2021-11-09
down
wechat
bug