当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-Depth Mechanism Understanding for Potassium-Ion Batteries by Electroanalytical Methods and Advanced In Situ Characterization Techniques
Small Methods ( IF 10.7 ) Pub Date : 2021-10-27 , DOI: 10.1002/smtd.202101130
Xi Liu 1 , Yong Tong 1 , Yuanji Wu 1 , Jiefeng Zheng 1 , Yingjuan Sun 1 , Hongyan Li 1
Affiliation  

The advancement of potassium ion batteries (PIBs) stimulated by the dearth of lithium resources is accelerating. Major progresses on the electrochemical properties are based on the optimization of electrode materials, electrolytes, and other components. More significantly, the prerequisites for optimizing these key compositions are in-depth and comprehensive exploration of electrochemical reaction processes, including the evolution of morphology and structure, phase transition, interface behaviors, and K+ movement, etc. As a result, the obtained K+ storage mechanism via analyzing aforementioned reaction processes sheds light on furthering practical application of PIBs. Typical electrochemical analysis methods are capable of obtaining physical and chemical characteristics. The advent of in situ electrochemical measurements enables dynamic observation and monitoring, thereby gaining extensive insights into the intricate mechanism of capacity degradation and interface kinetics. By coupling with these powerful electrochemical characterization techniques, inspiring works in PIBs will burgeon into wide realms of energy storage fields. In this review, some typical electroanalytical tests and in situ hyphenated measurements are described with the main concentration on how these techniques play a role in investigating the potassium storage mechanism for PIBs and achieving encouraging results.

中文翻译:

通过电分析方法和先进的原位表征技术深入了解钾离子电池的机理

在锂资源匮乏的刺激下,钾离子电池(PIBs)的发展正在加速。电化学性能的主要进展基于电极材料、电解质和其他成分的优化。更重要的是,优化这些关键成分的前提是对电化学反应过程进行深入和全面的探索,包括形貌和结构的演变、相变、界面行为和K +运动等。因此,获得的K +通过对上述反应过程的分析,揭示了 PIB 的进一步实际应用。典型的电化学分析方法能够获得物理和化学特性。原位电化学测量的出现使动态观察和监测成为可能,从而深入了解容量退化和界面动力学的复杂机制。通过与这些强大的电化学表征技术相结合,PIBs 中的鼓舞人心的工作将迅速进入储能领域的广泛领域。在这篇综述中,描述了一些典型的电分析测试和原位连接测量,主要集中在这些技术如何在研究 PIB 的钾储存机制中发挥作用并取得令人鼓舞的结果。
更新日期:2021-12-14
down
wechat
bug