当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An Axially Continuous Graphene–Copper Wire for High-Power Transmission: Thermoelectrical Characterization and Mechanisms
Advanced Materials ( IF 27.4 ) Pub Date : 2021-10-22 , DOI: 10.1002/adma.202104208 Hamzeh Kashani 1 , Chunghwan Kim 1 , Christopher Rudolf 2 , F Keith Perkins 3 , Erin R Cleveland 3 , Wonmo Kang 1
Advanced Materials ( IF 27.4 ) Pub Date : 2021-10-22 , DOI: 10.1002/adma.202104208 Hamzeh Kashani 1 , Chunghwan Kim 1 , Christopher Rudolf 2 , F Keith Perkins 3 , Erin R Cleveland 3 , Wonmo Kang 1
Affiliation
The demand for high-power electrical transmission continues to increase with technical advances in electric vehicles, unmanned drones, portable devices, and deployable military applications. In this study, significantly enhanced electrical properties (i.e., a 450% increase in the current density breakdown limit) are demonstrated by synthesizing axially continuous graphene layers on microscale-diameter wires. To elucidate the underlying mechanisms of the observed enhancements, the electrical properties of pure copper wires and axially continuous graphene–copper (ACGC) wires with three different diameters are characterized while controlling the experimental conditions, including ambient temperature, gases, and pressure. The study reveals that the main mechanism that allows the application of extremely large current densities (>400 000 A cm−2) through the ACGC wires is threefold: the continuous graphene layers considerably improve: 1) surface heat dissipation (224% higher), 2) electrical conductivity (41% higher), and 3) thermal stability (41.2% lower resistivity after thermal cycles up to 450 °C), compared with pure copper wires. In addition, it is observed, through the use of high-speed camera images, that the ACGC wires exhibit very different failure behavior near the current density limit, compared with the pure copper wires.
中文翻译:
用于大功率传输的轴向连续石墨烯-铜线:热电特性和机制
随着电动汽车、无人机、便携式设备和可部署军事应用的技术进步,对大功率电力传输的需求不断增加。在这项研究中,通过在微米直径的导线上合成轴向连续的石墨烯层,证明了显着增强的电气特性(即电流密度击穿极限增加了 450%)。为了阐明所观察到的增强的潜在机制,在控制实验条件(包括环境温度、气体和压力)的同时,表征了具有三种不同直径的纯铜线和轴向连续石墨烯 - 铜(ACGC)线的电性能。研究表明,允许应用极大电流密度(>400 000 A cm-2 ) 通过 ACGC 线是三重的:连续的石墨烯层显着改善:1) 表面散热(高 224%),2)电导率(高 41%),和 3)热稳定性(热后电阻率低 41.2%)循环高达 450 °C),与纯铜线相比。此外,通过使用高速摄像机图像观察到,与纯铜线相比,ACGC 线在电流密度极限附近表现出非常不同的故障行为。
更新日期:2021-12-22
中文翻译:
用于大功率传输的轴向连续石墨烯-铜线:热电特性和机制
随着电动汽车、无人机、便携式设备和可部署军事应用的技术进步,对大功率电力传输的需求不断增加。在这项研究中,通过在微米直径的导线上合成轴向连续的石墨烯层,证明了显着增强的电气特性(即电流密度击穿极限增加了 450%)。为了阐明所观察到的增强的潜在机制,在控制实验条件(包括环境温度、气体和压力)的同时,表征了具有三种不同直径的纯铜线和轴向连续石墨烯 - 铜(ACGC)线的电性能。研究表明,允许应用极大电流密度(>400 000 A cm-2 ) 通过 ACGC 线是三重的:连续的石墨烯层显着改善:1) 表面散热(高 224%),2)电导率(高 41%),和 3)热稳定性(热后电阻率低 41.2%)循环高达 450 °C),与纯铜线相比。此外,通过使用高速摄像机图像观察到,与纯铜线相比,ACGC 线在电流密度极限附近表现出非常不同的故障行为。