当前位置: X-MOL 学术Sens. Actuators B Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2021-10-22 , DOI: 10.1016/j.snb.2021.130982
Na Luo 1 , Chen Wang 2 , Dan Zhang 1 , Mengmeng Guo 1 , Xiaohong Wang 1 , Zhixuan Cheng 1 , Jiaqiang Xu 1
Affiliation  

Controllable and efficient construction of oxygen vacancies on the surface of metal oxide semiconductors (MOSs) is essential for their application in the gas sensor. Herein, a general H2 reduction method is developed to synthesize SnO2 with oxygen vacancies defect (SnO2-D) by annealing the SnO2 in a H2 atmosphere at different temperature (300 °C, 400 °C and 500 °C), and then named SnO2-D3, SnO2-D4 and SnO2-D5, respectively. It was found that although the determined specific surface areas for pristine SnO2, SnO2-D3, SnO2-D4 and SnO2-D5 are 103.749 m2g−1, 63.316 m2g−1, 47.652 m2g−1 and 15.541 m2g−1, respectively, the gas sensitivity test results indicate that the SnO2-D4 Micro-Electro-Mechanical System (MEMS) sensor shows improved response and excellent low-concentration detection capability (down to 0.1 ppm) to H2 compared with that fabricated with pristine SnO2, SnO2-D3 and SnO2-D5. The abnormal relationship between specific surface area and gas sensing performance is attributed to the more oxygen vacancies of SnO2-D4 surface. In addition, ZnO (ZnO-D) and In2O3 (In2O3-D) with oxygen vacancy defects based on the H2 reduction method show better gas sensitivity than ZnO and In2O3 sensors, which further proves that oxygen vacancy defects can effectively improve the gas-sensing performance of MOSs.



中文翻译:

基于含氧空位SnO2的超低检测限MEMS氢传感器

在金属氧化物半导体 (MOS) 表面上可控且有效地构建氧空位对其在气体传感器中的应用至关重要。在此,一般的ħ 2还原方法进行显影,以合成的SnO 2与氧空位缺陷(SNO 2通过退火的SnO-D)2再在H 2在不同温度下(300℃,400℃和500℃)的气氛,然后分别命名为 SnO 2 -D3、SnO 2 -D4 和 SnO 2 -D5。发现虽然原始 SnO 2、SnO 2 -D3、SnO 2 -D4 和 SnO 2的测定比表面积-D5分别为103.749 m 2 g -1、63.316 m 2 g -1、47.652 m 2 g -1和15.541 m 2 g -1,气敏试验结果表明SnO 2 -D4微机电与使用原始 SnO 2、SnO 2 -D3 和 SnO 2 -D5制造的传感器相比,系统 (MEMS) 传感器对 H 2显示出改进的响应和出色的低浓度检测能力(低至 0.1 ppm)。比表面积与气敏性能之间的异常关系归因于SnO 2的更多氧空位-D4 表面。此外,基于H 2还原法的具有氧空位缺陷的ZnO (ZnO-D) 和In 2 O 3 (In 2 O 3 -D)表现出比ZnO 和In 2 O 3传感器更好的气体灵敏度,这进一步证明了氧空位缺陷可以有效提高MOS的气敏性能。

更新日期:2021-12-09
down
wechat
bug