当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
All-Solid-State Lithium Metal Batteries with Sulfide Electrolytes: Understanding Interfacial Ion and Electron Transport
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2021-10-19 , DOI: 10.1021/accountsmr.1c00137 Changhong Wang 1 , Keegan Adair 1 , Xueliang Sun 1
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2021-10-19 , DOI: 10.1021/accountsmr.1c00137 Changhong Wang 1 , Keegan Adair 1 , Xueliang Sun 1
Affiliation
With the ever-growing demand for high energy density and high safety of energy storage technologies, all-solid-state lithium metal batteries (ASSLMBs) including all-solid-state lithium ion batteries (ASSLIBs) and all-solid-state lithium–sulfur batteries (ASSLSBs) have received considerable attention in recent years. To realize ASSLMBs, various solid-state electrolytes have been rapidly developed. Among them, sulfide electrolytes (SEs) demonstrate the highest ionic conductivity (>10 mS·cm–1) and the most favorable mechanical properties. However, the commercialization of SE-based ASSLMBs has been stymied by sluggish interfacial ion and electron transport kinetics, which arises from the detrimental interfacial reactions, poor interfacial solid–solid contact, and lithium dendrite growth. To overcome the interfacial challenges, an insightful understanding of the complex interfacial ion and electron transport processes in SE-based ASSLMBs is of the foremost importance. Although most of the previous review papers underscored the interfacial challenges and summarized the corresponding strategies, a fundamental understanding of the interfacial ions and electron-transport kinetics in SE-based ASSLMBs has not yet been presented. This Account therefore primarily summarizes our recent understanding of SE-based ASSLMBs from the perspectives of interfacial ion and electron transport, aiming to provide an insightful understanding of interfacial kinetics.
中文翻译:
含硫化物电解质的全固态锂金属电池:了解界面离子和电子传输
随着储能技术对高能量密度和高安全性的需求不断增长,全固态锂金属电池(ASSLMBs)包括全固态锂离子电池(ASSLIBs)和全固态锂硫电池近年来,电池(ASSLSB)受到了相当大的关注。为了实现 ASSLMB,各种固态电解质得到了迅速发展。其中,硫化物电解质 (SEs) 表现出最高的离子电导率 (>10 mS·cm –1) 和最有利的机械性能。然而,基于 SE 的 ASSLMB 的商业化受到界面离子和电子传输动力学缓慢的阻碍,这源于有害的界面反应、界面固-固接触不良和锂枝晶生长。为了克服界面挑战,深入了解基于 SE 的 ASSLMB 中复杂的界面离子和电子传输过程至关重要。尽管以前的大多数评论论文都强调了界面挑战并总结了相应的策略,但尚未对基于 SE 的 ASSLMB 中的界面离子和电子传输动力学进行基本了解。
更新日期:2021-10-19
中文翻译:
含硫化物电解质的全固态锂金属电池:了解界面离子和电子传输
随着储能技术对高能量密度和高安全性的需求不断增长,全固态锂金属电池(ASSLMBs)包括全固态锂离子电池(ASSLIBs)和全固态锂硫电池近年来,电池(ASSLSB)受到了相当大的关注。为了实现 ASSLMB,各种固态电解质得到了迅速发展。其中,硫化物电解质 (SEs) 表现出最高的离子电导率 (>10 mS·cm –1) 和最有利的机械性能。然而,基于 SE 的 ASSLMB 的商业化受到界面离子和电子传输动力学缓慢的阻碍,这源于有害的界面反应、界面固-固接触不良和锂枝晶生长。为了克服界面挑战,深入了解基于 SE 的 ASSLMB 中复杂的界面离子和电子传输过程至关重要。尽管以前的大多数评论论文都强调了界面挑战并总结了相应的策略,但尚未对基于 SE 的 ASSLMB 中的界面离子和电子传输动力学进行基本了解。