当前位置: X-MOL 学术ACS Appl. Polym. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrically Conductive Kevlar Fibers and Polymer-Matrix Composites Enabled by Atomic Layer Deposition
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2021-10-14 , DOI: 10.1021/acsapm.1c01236
Robin E. Rodríguez 1 , Tae Hwa Lee 1 , Yuxin Chen 1 , Eric Kazyak 1 , Claire Huang 1 , Tae H. Cho 1 , William S. LePage 1 , M. D. Thouless 1, 2 , Mihaela Banu 1 , Neil P. Dasgupta 1, 2
Affiliation  

Multifunctional composites that incorporate nonstructural capabilities such as energy storage, self-healing, and structural health monitoring have the potential to transform load-bearing components in automotive and aerospace vehicles. Imparting electrical conductivity into polymer-matrix composites (PMCs) is an important step in enabling multifunctionality while maintaining mechanical stiffness and strength. In this work, electrically conductive PMCs were fabricated by conformally coating Kevlar 49 woven fabrics with aluminum-doped zinc oxide using atomic layer deposition (ALD). Electrical resistance was measured at the single-fiber, single-tow, and woven fabric levels as a function of coating thickness. The ALD coatings on adjacent fibers merge as their thickness increases, resulting in an interconnected network with improved percolation and lower resistance. After ALD, the fabrics were embedded in an epoxy matrix to manufacture PMCs. The electrical resistance of the composites increased with applied tensile strain, which was attributed to cracking of the conductive coatings. The relative change in resistance as a function of strain varied with coating thickness, which was rationalized by a thin-film fracture mechanics model. This work demonstrates a pathway for scalable and tunable incorporation of electrical conductivity into fiber-reinforced composites without significantly changing their density or load-bearing capabilities.

中文翻译:

通过原子层沉积实现导电凯夫拉纤维和聚合物基复合材料

多功能复合材料结合了非结构功能,如能量存储、自愈和结构健康监测,有可能改变汽车和航空航天器的承重部件。将导电性赋予聚合物基复合材料 (PMC) 是实现多功能性同时保持机械刚度和强度的重要一步。在这项工作中,通过使用原子层沉积 (ALD) 用掺铝氧化锌共形涂覆 Kevlar 49 机织织物来制造导电 PMC。在单纤维、单丝束和机织织物级别测量电阻作为涂层厚度的函数。相邻纤维上的 ALD 涂层随着其厚度的增加而合并,从而形成具有改善的渗透和较低阻力的互连网络。在 ALD 之后,将织物嵌入环氧树脂基质中以制造 PMC。复合材料的电阻随着施加的拉伸应变而增加,这归因于导电涂层的开裂。作为应变函数的电阻的相对变化随涂层厚度而变化,这通过薄膜断裂力学模型进行了合理化。这项工作展示了一种将导电性可扩展和可调地结合到纤维增强复合材料中而不显着改变其密度或承载能力的途径。这归因于导电涂层的开裂。作为应变函数的电阻的相对变化随着涂层厚度而变化,这通过薄膜断裂力学模型进行了合理化。这项工作展示了一种将导电性可扩展和可调地结合到纤维增强复合材料中而不显着改变其密度或承载能力的途径。这归因于导电涂层的开裂。作为应变函数的电阻的相对变化随着涂层厚度而变化,这通过薄膜断裂力学模型进行了合理化。这项工作展示了一种将导电性可扩展和可调地结合到纤维增强复合材料中而不显着改变其密度或承载能力的途径。
更新日期:2021-11-12
down
wechat
bug