Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spiropyran-Appended Cucurbit[6]uril Enabling Direct Generation of 2D Materials inside Living Cells
Small ( IF 13.0 ) Pub Date : 2021-10-11 , DOI: 10.1002/smll.202102392 Delong Hou 1 , Liping Pu 1 , Shuai Zhou 1 , Rui Wang 1, 2 , Yong Xu 1 , Wenle Zhang 1 , Zhonghui Wang 1 , Qi Zeng 1 , Zhou Xu 3 , Haojun Fan 1 , Yi Chen 1
Small ( IF 13.0 ) Pub Date : 2021-10-11 , DOI: 10.1002/smll.202102392 Delong Hou 1 , Liping Pu 1 , Shuai Zhou 1 , Rui Wang 1, 2 , Yong Xu 1 , Wenle Zhang 1 , Zhonghui Wang 1 , Qi Zeng 1 , Zhou Xu 3 , Haojun Fan 1 , Yi Chen 1
Affiliation
The unique structural advantage and physicochemical properties render some 2D materials emerging platforms for intracellular bioimaging, biosensing, or disease theranostics. Despite recent advances in this field, one major challenge lies in bypassing the endocytic uptake barrier to allow internalization of very large 2D materials that have longer retention time in cells, and hence greater potency as intracellular functional platforms than small, endocytosable counterparts. Here, an engineered cucurbit[6]uril carrying at its periphery multiple spiropyran pendants that readily translocates into cytosol, and then polymerizes laterally and non-covalently in a controlled manner, enabling direct generation of 2D materials inside living cells, is reported. The resultant 2D materials are single-monomer-thick and can in situ grow up to 0.8–1.2 µm in lateral size, experimentally proved too large to be endocytosed from outside the cells even after surface engineered with biorecognition entities. A Förster resonance energy transfer assay is further devised for real-time visualization of the polymerization dynamics in vivo, clearly demonstrating the rationale in this study. With the otherwise non-endocytosable large 2D materials gaining access to cytosol, potent intracellular signaling or theranostic platform that surpasses the intrinsic performance limit of conventional small counterparts are in sight.
中文翻译:
Spiropyran-Appended Cucurbit[6]uril 能够在活细胞内直接生成二维材料
独特的结构优势和物理化学特性使一些二维材料成为细胞内生物成像、生物传感或疾病治疗学的新兴平台。尽管该领域最近取得了进展,但一个主要挑战在于绕过内吞摄取障碍,以允许在细胞中具有更长保留时间的非常大的 2D 材料内化,因此作为细胞内功能平台比小的、可内吞的对应物具有更大的效力。在这里,报道了一种工程葫芦[6] uril 在其外围携带多个螺吡喃悬垂物,这些悬垂物很容易转移到细胞质中,然后以受控方式横向和非共价聚合,从而能够在活细胞内直接生成二维材料。由此产生的二维材料是单一单体厚度,可以原位增长到 0.8-1。2 µm 的横向尺寸,实验证明太大,即使在用生物识别实体进行表面工程化后也无法从细胞外部被内吞。进一步设计了 Förster 共振能量转移分析,用于实时可视化体内聚合动力学,清楚地证明了本研究的基本原理。随着其他不可内吞的大型 2D 材料获得胞质溶胶,强大的细胞内信号或治疗诊断平台超越了传统小型对应物的内在性能限制。清楚地证明了本研究的基本原理。随着其他不可内吞的大型 2D 材料获得胞质溶胶,强大的细胞内信号或治疗诊断平台超越了传统小型对应物的内在性能限制。清楚地证明了本研究的基本原理。随着其他不可内吞的大型 2D 材料获得胞质溶胶,强大的细胞内信号或治疗诊断平台超越了传统小型对应物的内在性能限制。
更新日期:2021-10-11
中文翻译:
Spiropyran-Appended Cucurbit[6]uril 能够在活细胞内直接生成二维材料
独特的结构优势和物理化学特性使一些二维材料成为细胞内生物成像、生物传感或疾病治疗学的新兴平台。尽管该领域最近取得了进展,但一个主要挑战在于绕过内吞摄取障碍,以允许在细胞中具有更长保留时间的非常大的 2D 材料内化,因此作为细胞内功能平台比小的、可内吞的对应物具有更大的效力。在这里,报道了一种工程葫芦[6] uril 在其外围携带多个螺吡喃悬垂物,这些悬垂物很容易转移到细胞质中,然后以受控方式横向和非共价聚合,从而能够在活细胞内直接生成二维材料。由此产生的二维材料是单一单体厚度,可以原位增长到 0.8-1。2 µm 的横向尺寸,实验证明太大,即使在用生物识别实体进行表面工程化后也无法从细胞外部被内吞。进一步设计了 Förster 共振能量转移分析,用于实时可视化体内聚合动力学,清楚地证明了本研究的基本原理。随着其他不可内吞的大型 2D 材料获得胞质溶胶,强大的细胞内信号或治疗诊断平台超越了传统小型对应物的内在性能限制。清楚地证明了本研究的基本原理。随着其他不可内吞的大型 2D 材料获得胞质溶胶,强大的细胞内信号或治疗诊断平台超越了传统小型对应物的内在性能限制。清楚地证明了本研究的基本原理。随着其他不可内吞的大型 2D 材料获得胞质溶胶,强大的细胞内信号或治疗诊断平台超越了传统小型对应物的内在性能限制。