当前位置:
X-MOL 学术
›
J. Am. Math. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
New bounds on the density of lattice coverings
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-07-28 , DOI: 10.1090/jams/984 Or Ordentlich , Oded Regev , Barak Weiss
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-07-28 , DOI: 10.1090/jams/984 Or Ordentlich , Oded Regev , Barak Weiss
Abstract:We obtain new upper bounds on the minimal density $\Theta _{n, \mathcal {K}}$ of lattice coverings of ${\mathbb {R}}^n$ by dilates of a convex body $\mathcal {K}$. We also obtain bounds on the probability (with respect to the natural Haar-Siegel measure on the space of lattices) that a randomly chosen lattice $L$ satisfies $L+\mathcal {K}= {\mathbb {R}}^n$. As a step in the proof, we utilize and strengthen results on the discrete Kakeya problem.
中文翻译:
格子覆盖密度的新界限
摘要:我们通过膨胀凸体 $\mathcal { K}$。我们还获得了随机选择的格子 $L$ 满足 $L+\mathcal {K}= {\mathbb {R}}^n$ 的概率的边界(相对于格子空间上的自然 Haar-Siegel 测度) . 作为证明的一步,我们利用并加强了离散 Kakeya 问题的结果。
更新日期:2021-07-28
中文翻译:
格子覆盖密度的新界限
摘要:我们通过膨胀凸体 $\mathcal { K}$。我们还获得了随机选择的格子 $L$ 满足 $L+\mathcal {K}= {\mathbb {R}}^n$ 的概率的边界(相对于格子空间上的自然 Haar-Siegel 测度) . 作为证明的一步,我们利用并加强了离散 Kakeya 问题的结果。