当前位置: X-MOL 学术J. Am. Math. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Seiberg-Witten equations and the length spectrum of hyperbolic three-manifolds
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-08-02 , DOI: 10.1090/jams/982
Francesco Lin , Michael Lipnowski

Abstract:We exhibit the first examples of hyperbolic three-manifolds for which the Seiberg-Witten equations do not admit any irreducible solution. Our approach relies on hyperbolic geometry in an essential way; it combines an explicit upper bound for the first eigenvalue on coexact $1$-forms $\lambda _1^*$ on rational homology spheres which admit irreducible solutions together with a version of the Selberg trace formula relating the spectrum of the Laplacian on coexact $1$-forms with the volume and complex length spectrum of a hyperbolic three-manifold. Using these relationships, we also provide precise numerical bounds on $\lambda _1^*$ for several hyperbolic rational homology spheres.


中文翻译:

Seiberg-Witten 方程和双曲三流形的长度谱

摘要:我们展示了 Seiberg-Witten 方程不承认任何不可约解的双曲三流形的第一个例子。我们的方法在本质上依赖于双曲几何;它结合了第一个特征值的显式上限,在有理同调球体上的共存 $1$-形式 $\lambda_1^*$ 与一个版本的 Selberg 迹公式相关- 形成双曲三流形的体积和复长度谱。使用这些关系,我们还为几个双曲有理同调球体提供了 $\lambda _1^*$ 上的精确数值界限。
更新日期:2021-10-08
down
wechat
bug