当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Patterning and a Composite Protective Layer Provide Modified Li Metal Anodes for Dendrite-Free High-Voltage Solid-State Lithium Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-09-29 , DOI: 10.1021/acsaem.1c02097
Chelladurai Karuppiah, Shimelis Lemma Beshahwured, Yi-Shiuan Wu, Lakshmipriya Musuvadhi Babulal, Kumlachew Zelalem Walle, Hoai Khang Tran, She-Huang Wu, Rajan Jose, Chun-Chen Yang
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-09-29 , DOI: 10.1021/acsaem.1c02097
Chelladurai Karuppiah, Shimelis Lemma Beshahwured, Yi-Shiuan Wu, Lakshmipriya Musuvadhi Babulal, Kumlachew Zelalem Walle, Hoai Khang Tran, She-Huang Wu, Rajan Jose, Chun-Chen Yang
![]() |
Safety is an extremely important factor when developing Li metal anodes for high-energy-density battery systems. Lithium dendrite formation is one of the major phenomena leading to serious safety issues and poor lifetimes of lithium batteries. In this study, we applied a combined surface modification strategy to obtain stable dendrite-free Li anodes for solid-state lithium batteries (SSLBs). We coated a polydopamine (PDA)-functionalized vapor-grown carbon nanofiber (VGCF)/lithiated-Nafion (LiNf) polymer composite (VGCF@PDA/LiNf) as a protective layer onto a patterned Li metal surface to provide selective lithiophilic sites for Li deposition. We also applied a sandwich-type hybrid solid polymer electrolyte (HSE) membrane (PVDF-HFP+LiTFSI+SN/Al-LLZO@PVDH-HFP+LiTFSI+SN/PVDF-HFP+LiTFSI+SN) to enhance ionic transport between the anode and cathode due to its high Li+ ionic conductivity (ca. 3.68 × 10–4 S cm–1). The resulting SSLB assembled using a high-voltage pristine LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and the surface-modified Li anode delivered a higher discharge capacity at 0.1C and excellent cyclability at a rate of 0.2C (capacity retention >80% for 100 cycles) when compared with the corresponding SSLB incorporating the unmodified Li anode. Furthermore, the SSLB featuring a Li2MoO4-modified NCM811 cathode exhibited outstanding cyclability, with retention greater than 83% after 200 cycles at a rate of 0.2C. This attractive electrochemical performance resulted from the prevention of structural variation and dendrite formation of the cathode and anode by the Li2MoO4 coating and the VGCF@PDA/LiNf protective layer, respectively. Hence, this strategy might be suitable for developing high-voltage battery systems with high safety and long-term stability in future SSLB applications.
中文翻译:
图案化和复合保护层为无枝晶高压固态锂电池提供改性锂金属负极
在开发用于高能量密度电池系统的锂金属负极时,安全性是一个极其重要的因素。锂枝晶形成是导致严重安全问题和锂电池寿命短的主要现象之一。在这项研究中,我们应用组合表面改性策略来获得稳定的无枝晶锂负极,用于固态锂电池(SSLB)。我们将聚多巴胺(PDA)功能化气相生长碳纳米纤维(VGCF)/锂化-Nafion(LiNf)聚合物复合材料(VGCF@PDA/LiNf)作为保护层涂覆在图案化的锂金属表面上,为锂提供选择性亲锂位点。沉积。+离子电导率(约 3.68 × 10 –4 S cm –1)。使用高压原始 LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) 正极和表面改性的锂负极组装所得的 SSLB在 0.1C 下具有更高的放电容量和在 0.2C 倍率下的优异循环性能(容量保持率 > 80%(100 次循环)与相应的包含未改性锂负极的 SSLB 相比。此外,具有 Li 2 MoO 4改性的 NCM811 正极表现出出色的循环性能,在 0.2C 的速率下循环 200 次后保留率大于 83%。这种有吸引力的电化学性能是由于分别通过 Li 2 MoO 4涂层和 VGCF@PDA/LiNf 保护层防止了正极和负极的结构变化和枝晶形成。因此,该策略可能适用于在未来的 SSLB 应用中开发具有高安全性和长期稳定性的高压电池系统。
更新日期:2021-10-25
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
图案化和复合保护层为无枝晶高压固态锂电池提供改性锂金属负极
在开发用于高能量密度电池系统的锂金属负极时,安全性是一个极其重要的因素。锂枝晶形成是导致严重安全问题和锂电池寿命短的主要现象之一。在这项研究中,我们应用组合表面改性策略来获得稳定的无枝晶锂负极,用于固态锂电池(SSLB)。我们将聚多巴胺(PDA)功能化气相生长碳纳米纤维(VGCF)/锂化-Nafion(LiNf)聚合物复合材料(VGCF@PDA/LiNf)作为保护层涂覆在图案化的锂金属表面上,为锂提供选择性亲锂位点。沉积。+离子电导率(约 3.68 × 10 –4 S cm –1)。使用高压原始 LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) 正极和表面改性的锂负极组装所得的 SSLB在 0.1C 下具有更高的放电容量和在 0.2C 倍率下的优异循环性能(容量保持率 > 80%(100 次循环)与相应的包含未改性锂负极的 SSLB 相比。此外,具有 Li 2 MoO 4改性的 NCM811 正极表现出出色的循环性能,在 0.2C 的速率下循环 200 次后保留率大于 83%。这种有吸引力的电化学性能是由于分别通过 Li 2 MoO 4涂层和 VGCF@PDA/LiNf 保护层防止了正极和负极的结构变化和枝晶形成。因此,该策略可能适用于在未来的 SSLB 应用中开发具有高安全性和长期稳定性的高压电池系统。