本研究的重点是开发用于大规模储氢应用的金属氢化物反应器的模块化设计。从这个角度来看,设计和分析了在内外表面冷却/加热的环形金属氢化物反应器。建立了一个数值模型来研究设计的环形金属氢化物反应器的吸收和解吸特性。研究了可以提供重量比(即,金属氢化物合金的质量与反应器的质量)为 2 的环形金属氢化物反应器的三种配置。前两种配置是环形金属氢化物反应器,仅改变传热流体的流动方向。第三种配置与第二种配置相同,在金属氢化物床内有额外的径向翅片。研究这三种配置的主要目的是使反应速率和出口温度的提高可视化。结果表明,使用第二种配置,峰值出口温度提高了 3.6 °C。同时,第三种配置将吸收和解吸率分别提高了 2.07 和 1.92 倍,而径向翅片仅占反应器体积的 4.6%。此外,对第三种配置进行了敏感性分析,以分析操作参数对吸收和解吸时间的影响。此外,第三种配置的性能与文献中存在的几种设计进行了比较。结果表明,使用第二种配置,峰值出口温度提高了 3.6 °C。同时,第三种配置将吸收和解吸速率分别提高了 2.07 和 1.92 倍,而径向翅片仅占反应器体积的 4.6%。此外,对第三种配置进行了敏感性分析,以分析操作参数对吸收和解吸时间的影响。此外,第三种配置的性能与文献中存在的几种设计进行了比较。结果表明,使用第二种配置,峰值出口温度提高了 3.6 °C。同时,第三种配置将吸收和解吸速率分别提高了 2.07 和 1.92 倍,而径向翅片仅占反应器体积的 4.6%。此外,对第三种配置进行了敏感性分析,以分析操作参数对吸收和解吸时间的影响。此外,第三种配置的性能与文献中存在的几种设计进行了比较。对第三种配置进行敏感性分析,以分析操作参数对吸收和解吸时间的影响。此外,第三种配置的性能与文献中存在的几种设计进行了比较。对第三种配置进行敏感性分析,以分析操作参数对吸收和解吸时间的影响。此外,第三种配置的性能与文献中存在的几种设计进行了比较。
"点击查看英文标题和摘要"
Design and performance analysis of an annular metal hydride reactor for large-scale hydrogen storage applications
The present study is focused on developing a modular design of a metal hydride reactor for large-scale hydrogen storage applications. In this perspective, an annular metal hydride reactor that is cooled/heated on both inner and outer surfaces is designed and analyzed. A numerical model is developed to study the absorption and desorption characteristics of the designed annular metal hydride reactor. Three configurations of the annular metal hydride reactor that could offer a weight ratio (i.e., mass of metal hydride alloy to mass of the reactor) of 2 are investigated. The first two configurations are of annular metal hydride reactor with only change in the heat transfer fluid's flow direction. The third configuration is the same as the second one, with extra radial fins inside the metal hydride bed. The main objective of studying the three configurations is to visualize the enhancement achieved in the reaction rate and outlet temperature. The results showed that the peak outlet temperature is enhanced by 3.6 °C with the second configuration. At the same time, the third configuration improved the absorption and desorption rates by a factor of 2.07 and 1.92, respectively, while the radial fins occupying only 4.6% of reactor volume. Further, a sensitivity analysis is conducted on the third configuration to analyze the influence of operating parameters on absorption and desorption times. Furthermore, the performance of the third configuration is compared with several designs present in the literature.