Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2021-09-20 , DOI: 10.1016/j.cej.2021.132521 Shuyun Yao 1 , Rui Zhao 1 , Shiyu Wang 1 , Yixiang Zhou 1 , Ruochen Liu 1 , Lingyuan Hu 1 , Anqi Zhang 1 , Ru Yang 1 , Xia Liu 1 , Zhenzhen Fu 1 , Dewei Wang 1 , Zhiyu Yang 1 , Yi-Ming Yan 1
Manganese dioxide is a typical electrode material for supercapacitor due to its high theoretical capacitance and good environmental compatibility. However, the development of MnO2 as electrode is limited by inferior conductivity, sluggish ionic transfer kinetics and poor cycling stability. Herein, we present a structure distortion strategy via Ni doping in MnO2 to boost its Na+ storage performance. The as-obtained Ni-MnO2 can deliver a high specific capacity of 379 F g-1 at 1 A g-1, excellent rate performance of 281 F g-1 at 20 A g-1, and a significantly enhanced cycling stability. In situ Raman results verify that Ni-MnO2 with structure distortion can achieve a promising cycling life. Density functional theory results suggest that the structure distortion can efficiently modulate electron configuration by delocalizing electron. Furthermore, the Na+ diffusion energy barrier is remarkedly decreased in Ni-MnO2, thus accelerating ionic transport kinetics. An asymmetric supercapacitor based on Ni-MnO2 cathode exhibits a high energy density of 114.6 Wh kg-1 at a power density of 3600 W kg-1. This work verifies the efficiency of structure distortion strategy on the improvement of Na ion storage performance in MnO2, which can be extended for the optimization of other electrode materials for energy storage.
中文翻译:
Ni掺杂诱导MnO2的结构畸变以实现高效的Na+存储
二氧化锰具有较高的理论电容和良好的环境相容性,是一种典型的超级电容器电极材料。然而,MnO 2作为电极的发展受到电导率差、离子转移动力学缓慢和循环稳定性差的限制。在此,我们提出了一种通过在 MnO 2 中掺杂 Ni来提高其 Na +存储性能的结构畸变策略。所获得的Ni-MnO 2可以在1 A g -1下提供379 F g -1的高比容量,在20 A g -1 下具有281 F g -1 的优异倍率性能,并且显着增强了循环稳定性。原位拉曼结果证实 Ni-MnO2具有结构畸变可以实现有希望的循环寿命。密度泛函理论结果表明,结构畸变可以通过离域电子有效地调节电子构型。此外,Ni-MnO 2 中的Na +扩散能垒显着降低,从而加速离子传输动力学。基于Ni-MnO 2阴极的不对称超级电容器在3600 W kg -1的功率密度下表现出114.6 Wh kg -1的高能量密度。该工作验证了结构畸变策略对提高MnO 2中Na离子存储性能的效率,可扩展用于优化其他用于储能的电极材料。